2K1E
NMR studies of a channel protein without membranes: structure and dynamics of water-solubilized KcsA
2K1E の概要
| エントリーDOI | 10.2210/pdb2k1e/pdb |
| 関連するPDBエントリー | 2KB1 |
| NMR情報 | BMRB: 15677 |
| 分子名称 | water soluble analogue of potassium channel, KcsA (1 entity in total) |
| 機能のキーワード | homotetramer, ion transport, ionic channel, membrane, transmembrane, transport, voltage-gated channel, membrane protein |
| 由来する生物種 | Escherichia coli |
| タンパク質・核酸の鎖数 | 4 |
| 化学式量合計 | 45618.51 |
| 構造登録者 | Ma, D.,Xu, Y.,Tillman, T.,Tang, P.,Meirovitch, E.,Eckenhoff, R.,Carnini, A. (登録日: 2008-02-29, 公開日: 2008-11-11, 最終更新日: 2024-05-29) |
| 主引用文献 | Ma, D.,Tillman, T.S.,Tang, P.,Meirovitch, E.,Eckenhoff, R.,Carnini, A.,Xu, Y. NMR studies of a channel protein without membranes: structure and dynamics of water-solubilized KcsA. Proc.Natl.Acad.Sci.Usa, 105:16537-16542, 2008 Cited by PubMed Abstract: Structural studies of polytopic membrane proteins are often hampered by the vagaries of these proteins in membrane mimetic environments and by the difficulties in handling them with conventional techniques. Designing and creating water-soluble analogues with preserved native structures offer an attractive alternative. We report here solution NMR studies of WSK3, a water-soluble analogue of the potassium channel KcsA. The WSK3 NMR structure (PDB ID code 2K1E) resembles the KcsA crystal structures, validating the approach. By more stringent comparison criteria, however, the introduction of several charged residues aimed at improving water solubility seems to have led to the possible formations of a few salt bridges and hydrogen bonds not present in the native structure, resulting in slight differences in the structure of WSK3 relative to KcsA. NMR dynamics measurements show that WSK3 is highly flexible in the absence of a lipid environment. Reduced spectral density mapping and model-free analyses reveal dynamic characteristics consistent with an isotropically tumbling tetramer experiencing slow (nanosecond) motions with unusually low local ordering. An altered hydrogen-bond network near the selectivity filter and the pore helix, and the intrinsically dynamic nature of the selectivity filter, support the notion that this region is crucial for slow inactivation. Our results have implications not only for the design of water-soluble analogues of membrane proteins but also for our understanding of the basic determinants of intrinsic protein structure and dynamics. PubMed: 18948596DOI: 10.1073/pnas.0805501105 主引用文献が同じPDBエントリー |
| 実験手法 | SOLUTION NMR |
構造検証レポート
検証レポート(詳細版)
をダウンロード






