Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

2JIC

High resolution structure of xylanase-II from one micron beam experiment

Summary for 2JIC
Entry DOI10.2210/pdb2jic/pdb
DescriptorXYLANASE-II (2 entities in total)
Functional Keywordshydrolase, endonuclease, xylan degradation, fungi, xylan, microbeam, glycosidase
Biological sourceTRICHODERMA LONGIBRACHIATUM
Total number of polymer chains1
Total formula weight20858.53
Authors
Moukhametzianov, R.,Burghammer, M.,Edwards, P.C.,Petitdemange, S.,Popov, D.,Fransen, M.,Schertler, G.F.,Riekel, C. (deposition date: 2007-02-27, release date: 2008-05-13, Last modification date: 2023-12-13)
Primary citationMoukhametzianov, R.,Burghammer, M.,Edwards, P.C.,Petitdemange, S.,Popov, D.,Fransen, M.,Mcmullan, G.,Schertler, G.F.,Riekel, C.
Protein Crystallography with a Micrometre-Sized Synchrotron-Radiation Beam.
Acta Crystallogr.,Sect.D, 64:158-, 2008
Cited by
PubMed Abstract: For the first time, protein microcrystallography has been performed with a focused synchrotron-radiation beam of 1 microm using a goniometer with a sub-micrometre sphere of confusion. The crystal structure of xylanase II has been determined with a flux density of about 3 x 10(10) photons s(-1) microm(-2) at the sample. Two sets of diffraction images collected from different sized crystals were shown to comprise data of good quality, which allowed a 1.5 A resolution xylanase II structure to be obtained. The main conclusion of this experiment is that a high-resolution diffraction pattern can be obtained from 20 microm(3) crystal volume, corresponding to about 2 x 10(8) unit cells. Despite the high irradiation dose in this case, it was possible to obtain an excellent high-resolution map and it could be concluded from the individual atomic B-factor patterns that there was no evidence of significant radiation damage. The photoelectron escape from a narrow diffraction channel is a possible reason for reduced radiation damage as indicated by Monte Carlo simulations. These results open many new opportunities in scanning protein microcrystallography and make random data collection from microcrystals a real possibility, therefore enabling structures to be solved from much smaller crystals than previously anticipated as long as the crystallites are well ordered.
PubMed: 18219115
DOI: 10.1107/S090744490705812X
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.5 Å)
Structure validation

240971

数据于2025-08-27公开中

PDB statisticsPDBj update infoContact PDBjnumon