Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

2CLB

The structure of the DPS-like protein from Sulfolobus solfataricus reveals a bacterioferritin-like di-metal binding site within a Dps- like dodecameric assembly

Summary for 2CLB
Entry DOI10.2210/pdb2clb/pdb
DescriptorDPS-LIKE PROTEIN, ZINC ION, FE (III) ION, ... (4 entities in total)
Functional Keywordsdi-iron carboxylate, hypothetical protein, bacterioferritin, hydrogen peroxide, metal binding protein, dps, archaea, dps- like, oxidative stress
Biological sourceSULFOLOBUS SOLFATARICUS
Cellular locationCytoplasm, nucleoid (By similarity): P95855
Total number of polymer chains8
Total formula weight177253.49
Authors
Gauss, G.H.,Benas, P.,Wiedenheft, B.,Young, M.,Douglas, T.,Lawrence, C.M. (deposition date: 2006-04-26, release date: 2006-07-17, Last modification date: 2024-11-20)
Primary citationGauss, G.H.,Benas, P.,Wiedenheft, B.,Young, M.,Douglas, T.,Lawrence, C.M.
Structure of the Dps-Like Protein from Sulfolobus Solfataricus Reveals a Bacterioferritin-Like Dimetal Binding Site within a Dps-Like Dodecameric Assembly.
Biochemistry, 45:10815-, 2006
Cited by
PubMed Abstract: The superfamily of ferritin-like proteins has recently expanded to include a phylogenetically distinct class of proteins termed DPS-like (DPSL) proteins. Despite their distinct genetic signatures, members of this subclass share considerable similarity to previously recognized DPS proteins. Like DPS, these proteins are expressed in response to oxidative stress, form dodecameric cage-like particles, preferentially utilize H(2)O(2) in the controlled oxidation of Fe(2+), and possess a short N-terminal extension implicated in stabilizing cellular DNA. Given these extensive similarities, the functional properties responsible for the preservation of the DPSL signature in the genomes of diverse prokaryotes have been unclear. Here, we describe the crystal structure of a DPSL protein from the thermoacidophilic archaeon Sulfolobus solfataricus. Although the overall fold of the polypeptide chain and the oligomeric state of this protein are indistinguishable from those of authentic DPS proteins, several important differences are observed. First, rather than a ferroxidase site at the subunit interface, as is observed in all other DPS proteins, the ferroxidase site in SsDPSL is buried within the four-helix bundle, similar to bacterioferritin. Second, the structure reveals a channel leading from the exterior surface of SsDPSL to the bacterioferritin-like dimetal binding site, possibly allowing divalent cations and/or H(2)O(2) to access the active site. Third, a pair of cysteine residues unique to DPSL proteins is found adjacent to the dimetal binding site juxtaposed between the exterior surface of the protein and the active site channel. The cysteine residues in this thioferritin motif may play a redox active role, possibly serving to recycle iron at the ferroxidase center.
PubMed: 16953567
DOI: 10.1021/BI060782U
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.4 Å)
Structure validation

237735

数据于2025-06-18公开中

PDB statisticsPDBj update infoContact PDBjnumon