2CCY
STRUCTURE OF FERRICYTOCHROME C(PRIME) FROM RHODOSPIRILLUM MOLISCHIANUM AT 1.67 ANGSTROMS RESOLUTION
「1CCY」から置き換えられました2CCY の概要
エントリーDOI | 10.2210/pdb2ccy/pdb |
分子名称 | CYTOCHROME C, HEME C (3 entities in total) |
機能のキーワード | electron transport (heme protein) |
由来する生物種 | Phaeospirillum molischianum |
タンパク質・核酸の鎖数 | 2 |
化学式量合計 | 28115.74 |
構造登録者 | Finzel, B.C.,Weber, P.C.,Hardman, K.D.,Salemme, F.R. (登録日: 1985-08-27, 公開日: 1986-01-21, 最終更新日: 2024-10-16) |
主引用文献 | Finzel, B.C.,Weber, P.C.,Hardman, K.D.,Salemme, F.R. Structure of ferricytochrome c' from Rhodospirillum molischianum at 1.67 A resolution. J.Mol.Biol., 186:627-643, 1985 Cited by PubMed Abstract: The structure of ferricytochrome c' from Rhodospirillum molischianum has been crystallographically refined to 1.67 A resolution using a combination of reciprocal space and restrained least-squares refinement methods. The final crystallographic R-factor for 30,533 reflections measured with I greater than sigma (I) between infinity and 1.67 A is 0.188. The final model incorporates 1944 unique protein atoms (of a total of 1972) together with 194 bound solvent molecules. The structure has been analysed with respect to its detailed conformational properties, secondary structural features, temperature factor behavior, bound solvent sites, and heme geometry. The asymmetric unit of the cytochrome c' crystal contains a dimer composed of chemically identical 128-residue polypeptide chains. Although the refined structure shows the monomers to be very similar, examination of the differences that do occur allows an evaluation of how different lattice contacts affect protein conformation and solvent binding. In particular, comparison of solvent binding sites in the two subunits allows identification of a common set that are not altered by lattice interactions. The preservation of these solvent interactions in different lattice environments suggests that they play a structural role in protein stabilization in solution. The refined structure additionally reveals some new features that relate to the ligand binding properties and unusual mixed-spin state character of cytochrome c'. Finally, comparison of the heme binding geometry in cytochrome c' and other structurally unrelated c-type cytochromes shows that two alternative, but sterically favorable, conformational variants occur among the seven examples examined. PubMed: 3005592DOI: 10.1016/0022-2836(85)90135-4 主引用文献が同じPDBエントリー |
実験手法 | X-RAY DIFFRACTION (1.67 Å) |
構造検証レポート
検証レポート(詳細版)
をダウンロード
