Summary for 2BI7
Entry DOI | 10.2210/pdb2bi7/pdb |
Related | 1WAM 2BI8 |
Descriptor | UDP-GALACTOPYRANOSE MUTASE, FLAVIN-ADENINE DINUCLEOTIDE (3 entities in total) |
Functional Keywords | fad, flavoprotein, isomerase, lipopolysaccharide biosynthesis |
Biological source | KLEBSIELLA PNEUMONIAE |
Total number of polymer chains | 1 |
Total formula weight | 45297.73 |
Authors | Beis, K.,Srikannathasan, V.,Naismith, J. (deposition date: 2005-01-20, release date: 2005-05-05, Last modification date: 2023-12-13) |
Primary citation | Beis, K.,Srikannathasan, V.,Liu, H.,Fullerton, S.W.B.,Bamford, V.A.,Sanders, D.A.R.,Whitfield, C.,Mcneil, M.R.,Naismith, J.H. Crystal Structures of Mycobacteria Tuberculosis and Klebsiella Pneumoniae Udp-Galactopyranose Mutase in the Oxidised State and Klebsiella Pneumoniae Udp-Galactopyranose Mutase in the (Active) Reduced State. J.Mol.Biol., 348:971-, 2005 Cited by PubMed Abstract: Uridine diphosphogalactofuranose (UDP-Galf) is the precursor of the d-galactofuranose sugar found in bacterial and parasitic cell walls, including those of many pathogens. UDP-Galf is made from UDP-galactopyranose by the enzyme UDP-galactopyranose mutase. The enzyme requires the reduced FADH- co-factor for activity. The structure of the Mycobacterium tuberculosis mutase with FAD has been determined to 2.25 A. The structures of Klebsiella pneumoniae mutase with FAD and with FADH- bound have been determined to 2.2 A and 2.35 A resolution, respectively. This is the first report of the FADH(-)-containing structure. Two flavin-dependent mechanisms for the enzyme have been proposed, one, which involves a covalent adduct being formed at the flavin and the other based on electron transfer. Using our structural data, we have examined the two mechanisms. The electron transfer mechanism is consistent with the structural data, not surprisingly, since it makes fewer demands on the precise positioning of atoms. A model based on a covalent adduct FAD requires repositioning of the enzyme active site and would appear to require the isoalloxazine ring of FADH- to buckle in a particular way. However, the FADH- structure reveals that the isoalloxazine ring buckles in the opposite sense, this apparently requires the covalent adduct to trigger profound conformational changes in the protein or to buckle the FADH- opposite to that seen in the apo structure. PubMed: 15843027DOI: 10.1016/J.JMB.2005.02.057 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2 Å) |
Structure validation
Download full validation report