Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

1ZA7

The crystal structure of salt stable cowpea cholorotic mottle virus at 2.7 angstroms resolution.

Summary for 1ZA7
Entry DOI10.2210/pdb1za7/pdb
Related1cwp
DescriptorCoat protein (2 entities in total)
Functional Keywordsmutant virus capsid structure, icosahedral particle, stablizing mutation, stable mutant, beta hexamer, beta barrel, bromovirus, point mutation, icosahedral virus, virus
Biological sourceCowpea chlorotic mottle virus
Cellular locationVirion : P03601
Total number of polymer chains3
Total formula weight52803.06
Authors
Bothner, B.,Speir, J.A.,Qu, C.,Willits, D.A.,Young, M.J.,Johnson, J.E. (deposition date: 2005-04-05, release date: 2006-03-21, Last modification date: 2023-08-23)
Primary citationSpeir, J.A.,Bothner, B.,Qu, C.,Willits, D.A.,Young, M.J.,Johnson, J.E.
Enhanced local symmetry interactions globally stabilize a mutant virus capsid that maintains infectivity and capsid dynamics.
J.Virol., 80:3582-3591, 2006
Cited by
PubMed Abstract: Structural transitions in viral capsids play a critical role in the virus life cycle, including assembly, disassembly, and release of the packaged nucleic acid. Cowpea chlorotic mottle virus (CCMV) undergoes a well-studied reversible structural expansion in vitro in which the capsid expands by 10%. The swollen form of the particle can be completely disassembled by increasing the salt concentration to 1 M. Remarkably, a single-residue mutant of the CCMV N-terminal arm, K42R, is not susceptible to dissociation in high salt (salt-stable CCMV [SS-CCMV]) and retains 70% of wild-type infectivity. We present the combined structural and biophysical basis for the chemical stability and viability of the SS-CCMV particles. A 2.7-A resolution crystal structure of the SS-CCMV capsid shows an addition of 660 new intersubunit interactions per particle at the center of the 20 hexameric capsomeres, which are a direct result of the K42R mutation. Protease-based mapping experiments of intact particles demonstrate that both the swollen and closed forms of the wild-type and SS-CCMV particles have highly dynamic N-terminal regions, yet the SS-CCMV particles are more resistant to degradation. Thus, the increase in SS-CCMV particle stability is a result of concentrated tethering of subunits at a local symmetry interface (i.e., quasi-sixfold axes) that does not interfere with the function of other key symmetry interfaces (i.e., fivefold, twofold, quasi-threefold axes). The result is a particle that is still dynamic but insensitive to high salt due to a new series of bonds that are resistant to high ionic strength and preserve the overall particle structure.
PubMed: 16537626
DOI: 10.1128/JVI.80.7.3582-3591.2006
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.7 Å)
Structure validation

238895

数据于2025-07-16公开中

PDB statisticsPDBj update infoContact PDBjnumon