Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

1TQ1

Solution structure of At5g66040, a putative protein from Arabidosis Thaliana

Summary for 1TQ1
Entry DOI10.2210/pdb1tq1/pdb
Descriptorsenescence-associated family protein (1 entity in total)
Functional Keywordsat5g66040, cesg, structural genomics, psi, protein structure initiative, center for eukaryotic structural genomics, unknown function
Biological sourceArabidopsis thaliana (thale cress)
Cellular locationPlastid, chloroplast: Q39129
Total number of polymer chains1
Total formula weight13823.39
Authors
Cornilescu, C.C.,Cornilescu, G.,Singh, S.,Lee, M.S.,Tyler, E.M.,Shahan, M.N.,Vinarov, D.,Markley, J.L.,Center for Eukaryotic Structural Genomics (CESG) (deposition date: 2004-06-16, release date: 2004-06-29, Last modification date: 2024-05-22)
Primary citationCornilescu, G.,Vinarov, D.A.,Tyler, E.M.,Markley, J.L.,Cornilescu, C.C.
Solution structure of a single-domain thiosulfate sulfurtransferase from Arabidopsis thaliana.
Protein Sci., 15:2836-2841, 2006
Cited by
PubMed Abstract: We describe the three-dimensional structure of the product of Arabidopsis thaliana gene At5g66040.1 as determined by NMR spectroscopy. This protein is categorized as single-domain sulfurtransferase and is annotated as a senescence-associated protein (sen1-like protein) and ketoconazole resistance protein (http://arabidopsis.org/info/genefamily/STR_genefamily.html). The sequence of At5g66040.1 is virtually identical to that of a protein from Arabidopsis found by others to confer ketoconazole resistance in yeast. Comparison of the three-dimensional structure with those in the Protein Data Bank revealed that At5g66040.1 contains an additional mobile beta-hairpin not found in other rhodaneses that may function in binding specific substrates. This represents the first structure of a single-domain plant sulfurtransferase. The enzymatically active cysteine-containing domain belongs to the CDC25 class of phosphatases, sulfide dehydrogenases, and stress proteins such as senescence specific protein 1 in plants, PspE and GlpE in bacteria, and cyanide and arsenate resistance proteins. Versions of this domain that lack the active site cysteine are found in other proteins, such as phosphatases, ubiquitin hydrolases, and sulfuryltransferases.
PubMed: 17088324
DOI: 10.1110/ps.062395206
PDB entries with the same primary citation
Experimental method
SOLUTION NMR
Structure validation

237992

数据于2025-06-25公开中

PDB statisticsPDBj update infoContact PDBjnumon