Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

1PU0

Structure of Human Cu,Zn Superoxide Dismutase

Summary for 1PU0
Entry DOI10.2210/pdb1pu0/pdb
Related1PTZ
DescriptorSuperoxide dismutase [Cu-Zn], COPPER (I) ION, ZINC ION, ... (5 entities in total)
Functional Keywordsals, fals, lou gehrig's disease, oxidoreductase
Biological sourceHomo sapiens (human)
Cellular locationCytoplasm : P00441
Total number of polymer chains10
Total formula weight159853.35
Authors
DiDonato, M.,Craig, L.,Huff, M.E.,Thayer, M.M.,Cardoso, R.M.F.,Kassmann, C.J.,Lo, T.P.,Bruns, C.K.,Powers, E.T.,Kelly, J.W.,Getzoff, E.D.,Tainer, J.A. (deposition date: 2003-06-23, release date: 2003-09-09, Last modification date: 2024-10-09)
Primary citationDiDonato, M.,Craig, L.,Huff, M.E.,Thayer, M.M.,Cardoso, R.M.F.,Kassmann, C.J.,Lo, T.P.,Bruns, C.K.,Powers, E.T.,Kelly, J.W.,Getzoff, E.D.,Tainer, J.A.
ALS Mutants of Human Superoxide Dismutase Form Fibrous Aggregates Via Framework Destabilization
J.Mol.Biol., 332:601-615, 2003
Cited by
PubMed Abstract: Many point mutations in human Cu,Zn superoxide dismutase (SOD) cause familial amyotrophic lateral sclerosis (FALS), a fatal neurodegenerative disorder in heterozygotes. Here we show that these mutations cluster in protein regions influencing architectural integrity. Furthermore, crystal structures of SOD wild-type and FALS mutant H43R proteins uncover resulting local framework defects. Characterizations of beta-barrel (H43R) and dimer interface (A4V) FALS mutants reveal reduced stability and drastically increased aggregation propensity. Moreover, electron and atomic force microscopy indicate that these defects promote the formation of filamentous aggregates. The filaments resemble those seen in neurons of FALS patients and bind both Congo red and thioflavin T, suggesting the presence of amyloid-like, stacked beta-sheet interactions. These results support free-cysteine-independent aggregation of FALS mutant SOD as an integral part of FALS pathology. They furthermore provide a molecular basis for the single FALS disease phenotype resulting from mutations of diverse side-chains throughout the protein: many FALS mutations reduce structural integrity, lowering the energy barrier for fibrous aggregation.
PubMed: 12963370
DOI: 10.1016/S0022-2836(03)00889-1
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.7 Å)
Structure validation

227111

數據於2024-11-06公開中

PDB statisticsPDBj update infoContact PDBjnumon