1MSK
METHIONINE SYNTHASE (ACTIVATION DOMAIN)
1MSK の概要
| エントリーDOI | 10.2210/pdb1msk/pdb |
| 分子名称 | COBALAMIN-DEPENDENT METHIONINE SYNTHASE, ACETATE ION, S-ADENOSYLMETHIONINE, ... (4 entities in total) |
| 機能のキーワード | methyltransferase, transferase, methionine biosynthesis, vitamin b12 |
| 由来する生物種 | Escherichia coli K12 |
| タンパク質・核酸の鎖数 | 1 |
| 化学式量合計 | 38206.65 |
| 構造登録者 | Dixon, M.M.,Huang, S.,Matthews, R.G.,Ludwig, M.L. (登録日: 1996-08-03, 公開日: 1997-04-01, 最終更新日: 2024-02-14) |
| 主引用文献 | Dixon, M.M.,Huang, S.,Matthews, R.G.,Ludwig, M. The structure of the C-terminal domain of methionine synthase: presenting S-adenosylmethionine for reductive methylation of B12. Structure, 4:1263-1275, 1996 Cited by PubMed Abstract: In both mammalian and microbial species, B12-dependent methionine synthase catalyzes methyl transfer from methyltetrahydrofolate (CH3-H4folate) to homocysteine. The B12 (cobalamin) cofactor plays an essential role in this reaction, accepting the methyl group from CH3-H4folate to form methylcob(III)alamin and in turn donating the methyl group to homocysteine to generate methionine and cob(I)alamin. Occasionally the highly reactive cob(I)alamin intermediate is oxidized to the catalytically inactive cob(II)alamin form. Reactivation to sustain enzyme activity is achieved by a reductive methylation, requiring S-adenosylmethionine (AdoMet) as the methyl donor and, in Esherichia coli, flavodoxin as an electron donor. The intact system is controlled and organized so that AdoMet, rather than methyltetrahydrofolate, is the methyl donor in the reactivation reaction. AdoMet is not wasted as a methyl donor in the catalytic cycle in which methionine is synthesized from homocysteine. The structures of the AdoMet binding site and the cobalamin-binding domains (previously determined) provide a starting point for understanding the methyl transfer reactions of methionine synthase. PubMed: 8939751DOI: 10.1016/S0969-2126(96)00135-9 主引用文献が同じPDBエントリー |
| 実験手法 | X-RAY DIFFRACTION (1.8 Å) |
構造検証レポート
検証レポート(詳細版)
をダウンロード






