1MO9
NADPH DEPENDENT 2-KETOPROPYL COENZYME M OXIDOREDUCTASE/CARBOXYLASE COMPLEXED WITH 2-KETOPROPYL COENZYME M
1MO9 の概要
| エントリーDOI | 10.2210/pdb1mo9/pdb |
| 関連するPDBエントリー | 1MOK |
| 分子名称 | orf3, FLAVIN-ADENINE DINUCLEOTIDE, (2-[2-KETOPROPYLTHIO]ETHANESULFONATE, ... (4 entities in total) |
| 機能のキーワード | nucleotide binding motifs, nucleotide binding domain, oxidoreductase |
| 由来する生物種 | Xanthobacter autotrophicus |
| タンパク質・核酸の鎖数 | 2 |
| 化学式量合計 | 116796.32 |
| 構造登録者 | Nocek, B.,Jang, S.B.,Jeong, M.S.,Clark, D.D.,Ensign, S.A.,Peters, J.W. (登録日: 2002-09-08, 公開日: 2002-11-27, 最終更新日: 2024-11-20) |
| 主引用文献 | Nocek, B.,Jang, S.B.,Jeong, M.S.,Clark, D.D.,Ensign, S.A.,Peters, J.W. Structural Basis for CO2 Fixation by a Novel Member of the Disulfide Oxidoreductase Family of Enzymes, 2-Ketopropyl Coenzyme M Oxidoreductase/Carboxylase Biochemistry, 41:12907-12913, 2002 Cited by PubMed Abstract: The NADPH:2-ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC) is the terminal enzyme in a metabolic pathway that results in the conversion of propylene to the central metabolite acetoacetate in Xanthobacter autotrophicus Py2. This enzyme is an FAD-containing enzyme that is a member of the NADPH:disulfide oxidoreductase (DSOR) family of enzymes that include glutathione reductase, dihydrolipoamide dehydrogenase, trypanothione reductase, thioredoxin reductase, and mercuric reductase. In contrast to the prototypical reactions catalyzed by members of the DSOR family, the NADPH:2-ketopropyl-coenzyme M oxidoreductase/carboxylase catalyzes the reductive cleavage of the thioether linkage of 2-ketopropyl-coenzyme M, and the subsequent carboxylation of the ketopropyl cleavage product, yielding the products acetoacetate and free coenzyme M. The structure of 2-KPCC reveals a unique active site in comparison to those of other members of the DSOR family of enzymes and demonstrates how the enzyme architecture has been adapted for the more sophisticated biochemical reaction. In addition, comparison of the structures in the native state and in the presence of bound substrate indicates the binding of the substrate 2-ketopropyl-coenzyme M induces a conformational change resulting in the collapse of the substrate access channel. The encapsulation of the substrate in this manner is reminiscent of the conformational changes observed in the well-characterized CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxidase (Rubisco). PubMed: 12390015DOI: 10.1021/bi026580p 主引用文献が同じPDBエントリー |
| 実験手法 | X-RAY DIFFRACTION (1.65 Å) |
構造検証レポート
検証レポート(詳細版)
をダウンロード






