1L43
CUMULATIVE SITE-DIRECTED CHARGE-CHANGE REPLACEMENTS IN BACTERIOPHAGE T4 LYSOZYME SUGGEST THAT LONG-RANGE ELECTROSTATIC INTERACTIONS CONTRIBUTE LITTLE TO PROTEIN STABILITY
1L43 の概要
| エントリーDOI | 10.2210/pdb1l43/pdb |
| 分子名称 | T4 LYSOZYME (2 entities in total) |
| 機能のキーワード | hydrolase (o-glycosyl) |
| 由来する生物種 | Enterobacteria phage T4 |
| 細胞内の位置 | Host cytoplasm : P00720 |
| タンパク質・核酸の鎖数 | 1 |
| 化学式量合計 | 18662.40 |
| 構造登録者 | |
| 主引用文献 | Sun, D.P.,Soderlind, E.,Baase, W.A.,Wozniak, J.A.,Sauer, U.,Matthews, B.W. Cumulative site-directed charge-change replacements in bacteriophage T4 lysozyme suggest that long-range electrostatic interactions contribute little to protein stability. J.Mol.Biol., 221:873-887, 1991 Cited by PubMed Abstract: Bacteriophage T4 lysozyme is a basic molecule with an isoelectric point above 9.0, and an excess of nine positive charges at neutral pH. It might be expected that it would be energetically costly to bring these out-of-balance charges from the extended, unfolded, form of the protein into the compact folded state. To determine the contribution of such long-range electrostatic interactions to the stability of the protein, five positively charged surface residues, Lys16, Arg119, Lys135, Lys147 and Arg154, were individually replaced with glutamic acid. Eight selected double, triple and quadruple mutants were also constructed so as to sequentially reduce the out-of-balance formal charge on the molecule from +9 to +1 units. Each of the five single variant proteins was crystallized and high-resolution X-ray analysis confirmed that each mutant structure was, in general, very similar to the wild-type. In the case of R154E, however, the Arg154 to Glu replacement caused a rearrangement in which Asp127 replaced Glu128 as the capping residue of a nearby alpha-helix. The thermal stabilities of all 13 variant proteins were found to be fairly similar, ranging from 0.5 kcal/mol more stable than wild-type to 1.7 kcal/mol less stable than wild-type. In the case of the five single charge-change variants, for which the structures were determined, the changes in stability can be rationalized in terms of changes in local interactions at the site of the replacement. There is no evidence that the reduction in the out-of-balance charge on the molecule increases the stability of the folded relative to the unfolded form, either at pH 2.8 or at pH 5.3. This indicates that long-range electrostatic interactions between the substituted amino acid residues and other charged groups on the surface of the molecule are weak or non-existent. Furthermore, the relative stabilities of the multiple charge replacement mutant proteins were found to be almost exactly equal to the sums of the relative stabilities of the constituent single mutant proteins. This also clearly indicates that the electrostatic interactions between the replaced charges are negligibly small. The activities of the charge-change mutant lysozymes, as measured by the rate of hydrolysis of cell wall suspensions, are essentially equal to that of the wild-type lysozyme, but on a lysoplate assay the mutant enzymes appear to have higher activity.(ABSTRACT TRUNCATED AT 400 WORDS) PubMed: 1942034DOI: 10.1016/0022-2836(91)80181-S 主引用文献が同じPDBエントリー |
| 実験手法 | X-RAY DIFFRACTION (1.8 Å) |
構造検証レポート
検証レポート(詳細版)
をダウンロード






