1KGL
Solution structure of cellular retinol binding protein type-I in complex with all-trans-retinol
1KGL の概要
エントリーDOI | 10.2210/pdb1kgl/pdb |
関連するPDBエントリー | 1CRB 1JBH |
NMR情報 | BMRB: 5319,5330,5331 |
分子名称 | CELLULAR RETINOL-BINDING PROTEIN TYPE I, RETINOL (2 entities in total) |
機能のキーワード | beta barrel, retinoid carrier, holo form, nmr spectroscopy, 15n isotope enrichment, lipid binding protein |
由来する生物種 | Rattus norvegicus (Norway rat) |
細胞内の位置 | Cytoplasm: P02696 |
タンパク質・核酸の鎖数 | 1 |
化学式量合計 | 16142.52 |
構造登録者 | Franzoni, L.,Luecke, C.,Perez, C.,Cavazzini, D.,Rademacher, M.,Ludwig, C.,Spisni, A.,Rossi, G.L.,Rueterjans, H. (登録日: 2001-11-27, 公開日: 2002-06-19, 最終更新日: 2024-05-22) |
主引用文献 | Franzoni, L.,Lucke, C.,Perez, C.,Cavazzini, D.,Rademacher, M.,Ludwig, C.,Spisni, A.,Rossi, G.L.,Ruterjans, H. Structure and Backbone Dynamics of Apo- and Holo-cellular Retinol-binding Protein in Solution. J.Biol.Chem., 277:21983-21997, 2002 Cited by PubMed Abstract: Retinoid-binding proteins play an important role in regulating transport, storage, and metabolism of vitamin A and its derivatives. The solution structure and backbone dynamics of rat cellular retinol-binding protein type I (CRBP) in the apo- and holo-form have been determined and compared using multidimensional high resolution NMR spectroscopy. The global fold of the protein is consistent with the common motif described for members of the intracellular lipid-binding protein family. The most relevant difference between the NMR structure ensembles of apo- and holoCRBP is the higher backbone disorder, in the ligand-free form, of some segments that frame the putative entrance to the ligand-binding site. These comprise alpha-helix II, the subsequent linker to beta-strand B, the hairpin turn between beta-strands C and D, and the betaE-betaF turn. The internal backbone dynamics, obtained from 15N relaxation data (T1, T2, and heteronuclear nuclear Overhauser effect) at two different fields, indicate several regions with significantly higher backbone mobility in the apoprotein, including the betaC-betaD and betaE-betaF turns. Although apoCRBP contains a binding cavity more shielded than that of any other retinoid carrier, conformational flexibility in the portal region may assist retinol uptake. The stiffening of the backbone in the holoprotein guarantees the stability of the complex during retinol transport and suggests that targeted retinol release requires a transiently open state that is likely to be promoted by the acceptor or the local environment. PubMed: 11934897DOI: 10.1074/jbc.M201994200 主引用文献が同じPDBエントリー |
実験手法 | SOLUTION NMR |
構造検証レポート
検証レポート(詳細版)をダウンロード