Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

1GFF

THE ATOMIC STRUCTURE OF THE DEGRADED PROCAPSID PARTICLE OF THE BACTERIOPHAGE G4: INDUCED STRUCTURAL CHANGES IN THE PRESENCE OF CALCIUM IONS AND FUNCTIONAL IMPLICATIONS

Summary for 1GFF
Entry DOI10.2210/pdb1gff/pdb
DescriptorBACTERIOPHAGE G4 CAPSID PROTEINS GPF, GPG, GPJ (3 entities in total)
Functional Keywordscoat protein, icosahedral virus, virus
Biological sourceEnterobacteria phage G4
More
Total number of polymer chains3
Total formula weight70271.34
Authors
Rossmann, M.G. (deposition date: 1995-11-06, release date: 1996-04-03, Last modification date: 2024-05-22)
Primary citationMcKenna, R.,Bowman, B.R.,Ilag, L.L.,Rossmann, M.G.,Fane, B.A.
Atomic structure of the degraded procapsid particle of the bacteriophage G4: induced structural changes in the presence of calcium ions and functional implications.
J.Mol.Biol., 256:736-750, 1996
Cited by
PubMed Abstract: Bacteriophage G4 and phiX174 are members of the Microviridae family. The degree of similarity of the structural proteins ranges from 66% identity of the F protein to 40% identity of the G protein. The atomic structure of the phiX174 virion had previously been determined by X-ray crystallography. Bacteriophage G4 procapsids, consisting of the structural proteins F, G, D, B, H, and small traces of J but no DNA, were set up for crystallization. However, the resultant crystals were of degraded procapsid particles, which had lost the assembly scaffolding proteins D and B, resulting in particles that resembled empty virions. The structure of the degraded G4 procapsid has been determined to 3.0 angstrom resolution. The particles crystallized in the hexagonal space group P6(3)22 with unit cell dimensions a=b=414.2(5) angstrom and c=263.0(3) angstrom. The diffraction data were collected at the Cornell High Energy Synchrotron Source (CHESS) on film and image plates using oscillation photography. Packing considerations indicated there were two particles per unit cell. A self-rotation function confirmed that the particles were positioned on 32 point group special positions in the unit cell. Initial phases were calculated to 6 angstrom resolution, based on the known phiX174 virion model. Phase information was then extended in steps to 3.0 angstrom resolution by molecular replacement electron density modification and particle envelope generation. The resulting electron density map was readily interpretable in terms of the F and G polypeptides, as occur in the mature capsid of phiX174. In a few regions of the electron density map there were inconsistencies between the density and the published amino acid sequence. Redetermining the amino acid sequence confirmed that the density was correct. The r.m.s. deviation between the Calpha backbone of the mature capsid of phiX174 and the degraded G4 procapsid was 0.36 angstrom for the F protein and 1.38 angstrom for the G protein. This is consistent with the greater conservation of the F protein compared to the G protein sequences among members of the Microviridae family. Functionally important features between phiX174 and G4 had greater conservation. Calcium ions (Ca2+) were shown to bind to G4 at a general site located near the icosahedral 3-fold axis on the F protein capsid, equivalent to sites found previously in phiX174. Binding of Ca2+ also caused the ordering of the conserved region of the DNA binding protein J, which was present in the degraded procapsid particle in the absence of DNA.
PubMed: 8642594
DOI: 10.1006/jmbi.1996.0121
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (3 Å)
Structure validation

237992

数据于2025-06-25公开中

PDB statisticsPDBj update infoContact PDBjnumon