Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

1GEQ

Entropic stabilization of the tryptophan synthase A-subunit from a hyperthermophile, pyrococcus furiosus: X-ray analysis and calorimetry

Summary for 1GEQ
Entry DOI10.2210/pdb1geq/pdb
DescriptorTRYPTOPHAN SYNTHASE ALPHA-SUBUNIT (2 entities in total)
Functional Keywordstryptophan synthase alpha-subunit, hyperthermophile, pyrococcus furiosus, x-ray analysis, stability, calorimetry, lyase
Biological sourcePyrococcus furiosus
Total number of polymer chains2
Total formula weight55071.69
Authors
Yutani, K.,Yamagata, Y. (deposition date: 2000-11-21, release date: 2000-12-13, Last modification date: 2023-12-27)
Primary citationYamagata, Y.,Ogasahara, K.,Hioki, Y.,Lee, S.J.,Nakagawa, A.,Nakamura, H.,Ishida, M.,Kuramitsu, S.,Yutani, K.
Entropic stabilization of the tryptophan synthase alpha-subunit from a hyperthermophile, Pyrococcus furiosus. X-ray analysis and calorimetry.
J.Biol.Chem., 276:11062-11071, 2001
Cited by
PubMed Abstract: The structure of the tryptophan synthase alpha-subunit from Pyrococcus furiosus was determined by x-ray analysis at 2.0-A resolution, and its stability was examined by differential scanning calorimetry. Although the structure of the tryptophan synthase alpha(2)beta(2) complex from Salmonella typhimurium has been already determined, this is the first report of the structure of the alpha-subunit alone. The alpha-subunit from P. furiosus (Pf-alpha-subunit) lacked 12 and 6 residues at the N and C termini, respectively, and one residue each in two loop regions as compared with that from S. typhimurium (St-alpha-subunit), resulting in the absence of an N-terminal helix and the shortening of a C-terminal helix. The structure of the Pf-alpha-subunit was essentially similar to that of the St-alpha-subunit in the alpha(2)beta(2) complex. The differences between both structures were discussed in connection with the higher stability of the Pf-alpha-subunit and the complex formation of the alpha- and beta-subunits. Calorimetric results indicated that the Pf-alpha-subunit has extremely high thermostability and that its higher stability is caused by an entropic effect. On the basis of structural information of both proteins, we analyzed the contributions of each stabilization factor and could conclude that hydrophobic interactions in the protein interior do not contribute to the higher stability of the Pf-alpha-subunit. Rather, the increase in ion pairs, decrease in cavity volume, and entropic effects due to shortening of the polypeptide chain play important roles in extremely high stability in Pf-alpha-subunit.
PubMed: 11118452
DOI: 10.1074/jbc.M009987200
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2 Å)
Structure validation

238895

数据于2025-07-16公开中

PDB statisticsPDBj update infoContact PDBjnumon