1F53
NMR STRUCTURE OF KILLER TOXIN-LIKE PROTEIN SKLP
Summary for 1F53
Entry DOI | 10.2210/pdb1f53/pdb |
Related | 1AG4 1BHU 1PRS 1WKT 2BB2 |
Descriptor | YEAST KILLER TOXIN-LIKE PROTEIN (1 entity in total) |
Functional Keywords | killer toxin-like protein, sklp, crystallin family, toxin |
Biological source | Streptomyces sp. |
Total number of polymer chains | 1 |
Total formula weight | 9618.59 |
Authors | Ohki, S.,Kariya, E.,Hiraga, K.,Wakamiya, A.,Isobe, T.,Oda, K.,Kainosho, M. (deposition date: 2000-06-12, release date: 2000-12-27, Last modification date: 2024-10-23) |
Primary citation | Ohki, S.Y.,Kariya, E.,Hiraga, K.,Wakamiya, A.,Isobe, T.,Oda, K.,Kainosho, M. NMR structure of Streptomyces killer toxin-like protein, SKLP: further evidence for the wide distribution of single-domain betagamma-crystallin superfamily proteins. J.Mol.Biol., 305:109-120, 2001 Cited by PubMed Abstract: A protein isolated from the culture supernatant of the soil bacterium, Streptomyces sp. F-287, exhibits cytocidal effects for both budding and fission yeasts, and causes morphological changes of yeasts and filamentous fungi. This protein, which was the first killer toxin-like protein for yeasts identified in the Streptomyces microorganism, was named SKLP (Streptomyces killer toxin-like protein). Since the amino acid sequence of the protein, as determined by sequential Edman degradations, seemed to be unique, we determined the structure by NMR spectroscopy. Although the actual target of SKLP in yeasts has not been determined yet, the structure might give us a clue to characterize the targets. The solution structure of SKLP determined by NMR, however, turned out to be a single-domain crystallin-like protein, with two Greek key motifs and a short extra beta-strand at the N terminus. The final ensemble of 20 NMR structures overlaid onto their mean coordinate with rmsd values of 0.32(+/-0.06) A for the backbone atoms involved in the secondary structure elements. As a yeast killer toxin, WmKT, isolated from the yeast strain Williopsis mrakii also has a Greek key beta-barrel fold, we have made a detailed comparison of the structural features of SKLP with the other crystallin superfamily proteins. It is very interesting that SKLP has a unique electrostatic potential distribution on the molecular surface. Namely, one surface of the beta-barrel fold in SKLP has a large negatively charged region, with an isolated positive charge of the Arg62 side-chain at the center. The edge of this surface is surrounded by positively charged residues, including Arg31, Arg65 and Arg74. The salient features of the charge distribution on this surface and the cluster of Arg residues might be related to the target binding of SKLP. PubMed: 11114251DOI: 10.1006/jmbi.2000.4244 PDB entries with the same primary citation |
Experimental method | SOLUTION NMR |
Structure validation
Download full validation report