1BXH
CONCANAVALIN A COMPLEXED TO METHYL ALPHA1-2 MANNOBIOSIDE
1BXH の概要
エントリーDOI | 10.2210/pdb1bxh/pdb |
分子名称 | Concanavalin-A, methyl alpha-D-galactopyranoside-(1-2)-methyl alpha-D-mannopyranoside, methyl alpha-D-galactopyranoside-(1-2)-methyl alpha-D-galactopyranoside, ... (7 entities in total) |
機能のキーワード | carbohydrate conformation, con a saccharide complex, molecular recognition, thermodynamics, sugar binding protein |
由来する生物種 | Canavalia ensiformis (Jack bean) 詳細 |
タンパク質・核酸の鎖数 | 4 |
化学式量合計 | 103998.67 |
構造登録者 | Moothoo, D.N.,Canaan, B.,Field, R.A.,Naismith, J.H. (登録日: 1998-10-02, 公開日: 1998-10-07, 最終更新日: 2023-08-09) |
主引用文献 | Moothoo, D.N.,Canan, B.,Field, R.A.,Naismith, J.H. Man alpha1-2 Man alpha-OMe-concanavalin A complex reveals a balance of forces involved in carbohydrate recognition. Glycobiology, 9:539-545, 1999 Cited by PubMed Abstract: We have determined the crystal structure of the methyl glycoside of Man alpha1-2 Man in complex with the carbohydrate binding legume lectin concanavalin A (Con A). Man alpha1-2 Man alpha-OMe binds more tightly to concanavalin A than do its alpha1-3 and alpha1-6 linked counterparts. There has been much speculation as to why this is so, including a suggestion of the presence of multiple binding sites for the alpha1-2 linked disaccharide. Crystals of the Man alpha1-2 Man alpha-OMe-Con A complex form in the space group P2(1)2(1)2(1) with cell dimensions a = 119.7 A, b = 119.7 A, c = 68.9 A and diffract to 2. 75A. The final model has good geometry and an R factor of 19.6% (Rfree= 22.8%). One tetramer is present in the asymmetric unit. In three of the four subunits, electron density for the disaccharide is visible. In the fourth only a monosaccharide is seen. In one subunit the reducing terminal sugar is recognized by the monosaccharide site; the nonreducing terminal sugar occupies a new site and the major solution conformation of the inter-sugar glycosidic linkage conformation is adopted. In contrast, in another subunit the non reducing terminal sugar sits in the so called monosaccharide binding site; the reducing terminal sugar adopts a different conformation about its inter-sugar glycosidic linkage in order for the methyl group to access a hydrophobic pocket. In the third subunit, electron density for both binding modes is observed. We demonstrate that an extended carbohydrate binding site is capable of binding the disaccharide in two distinct ways. These results provide an insight in to the balance of forces controlling protein carbohydrate interactions. PubMed: 10336986DOI: 10.1093/glycob/9.6.539 主引用文献が同じPDBエントリー |
実験手法 | X-RAY DIFFRACTION (2.75 Å) |
構造検証レポート
検証レポート(詳細版)をダウンロード