+
Open data
-
Basic information
Entry | Database: PDB / ID: 9fh9 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | Structure of CyclinB1 N-terminus bound to the NCP | |||||||||
![]() |
| |||||||||
![]() | CELL CYCLE / Arginine anchor / NCP / Cyclin B1 / Complex | |||||||||
Function / homology | ![]() cyclin B1-CDK1 complex / positive regulation of mitochondrial ATP synthesis coupled electron transport / Mitotic Prophase / G2/M DNA replication checkpoint / E2F-enabled inhibition of pre-replication complex formation / Depolymerization of the Nuclear Lamina / positive regulation of attachment of spindle microtubules to kinetochore / MASTL Facilitates Mitotic Progression / regulation of mitotic cell cycle spindle assembly checkpoint / Activation of NIMA Kinases NEK9, NEK6, NEK7 ...cyclin B1-CDK1 complex / positive regulation of mitochondrial ATP synthesis coupled electron transport / Mitotic Prophase / G2/M DNA replication checkpoint / E2F-enabled inhibition of pre-replication complex formation / Depolymerization of the Nuclear Lamina / positive regulation of attachment of spindle microtubules to kinetochore / MASTL Facilitates Mitotic Progression / regulation of mitotic cell cycle spindle assembly checkpoint / Activation of NIMA Kinases NEK9, NEK6, NEK7 / Phosphorylation of Emi1 / patched binding / Transcriptional regulation by RUNX2 / Nuclear Pore Complex (NPC) Disassembly / Phosphorylation of the APC/C / outer kinetochore / Initiation of Nuclear Envelope (NE) Reformation / Polo-like kinase mediated events / cyclin-dependent protein serine/threonine kinase activator activity / UV-damage excision repair / Golgi Cisternae Pericentriolar Stack Reorganization / Condensation of Prometaphase Chromosomes / nucleosome disassembly / cyclin-dependent protein serine/threonine kinase regulator activity / mitotic metaphase chromosome alignment / microtubule organizing center / Regulation of APC/C activators between G1/S and early anaphase / ubiquitin-like protein ligase binding / negative regulation of megakaryocyte differentiation / Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex / protein localization to CENP-A containing chromatin / Regulation of MITF-M-dependent genes involved in cell cycle and proliferation / Chromatin modifying enzymes / Replacement of protamines by nucleosomes in the male pronucleus / Cyclin A/B1/B2 associated events during G2/M transition / CENP-A containing nucleosome / Nuclear events stimulated by ALK signaling in cancer / Packaging Of Telomere Ends / Recognition and association of DNA glycosylase with site containing an affected purine / Cleavage of the damaged purine / positive regulation of G2/M transition of mitotic cell cycle / Recognition and association of DNA glycosylase with site containing an affected pyrimidine / Cleavage of the damaged pyrimidine / Deposition of new CENPA-containing nucleosomes at the centromere / telomere organization / Inhibition of DNA recombination at telomere / Meiotic synapsis / Interleukin-7 signaling / RNA Polymerase I Promoter Opening / APC/C:Cdc20 mediated degradation of Cyclin B / positive regulation of mitotic cell cycle / Assembly of the ORC complex at the origin of replication / Resolution of Sister Chromatid Cohesion / Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex / SUMOylation of chromatin organization proteins / DNA methylation / TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest / Condensation of Prophase Chromosomes / Chromatin modifications during the maternal to zygotic transition (MZT) / HCMV Late Events / SIRT1 negatively regulates rRNA expression / epigenetic regulation of gene expression / ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression / PRC2 methylates histones and DNA / mitotic spindle organization / Regulation of endogenous retroelements by KRAB-ZFP proteins / Defective pyroptosis / Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) / HDACs deacetylate histones / Nonhomologous End-Joining (NHEJ) / RNA Polymerase I Promoter Escape / Transcriptional regulation by small RNAs / Formation of the beta-catenin:TCF transactivating complex / RUNX1 regulates genes involved in megakaryocyte differentiation and platelet function / Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3 / G2/M DNA damage checkpoint / HDMs demethylate histones / NoRC negatively regulates rRNA expression / DNA Damage/Telomere Stress Induced Senescence / B-WICH complex positively regulates rRNA expression / PKMTs methylate histone lysines / Meiotic recombination / Pre-NOTCH Transcription and Translation / Metalloprotease DUBs / RMTs methylate histone arginines / Activation of anterior HOX genes in hindbrain development during early embryogenesis / G1/S transition of mitotic cell cycle / Transcriptional regulation of granulopoiesis / HCMV Early Events / positive regulation of fibroblast proliferation / spindle pole / G2/M transition of mitotic cell cycle / structural constituent of chromatin / The role of GTSE1 in G2/M progression after G2 checkpoint / UCH proteinases / Regulation of PLK1 Activity at G2/M Transition / nucleosome / heterochromatin formation / nucleosome assembly / Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at DNA double strand breaks Similarity search - Function | |||||||||
Biological species | ![]() ![]() | |||||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.5 Å | |||||||||
![]() | Young, R.V.C. / Muhammad, R. / Alfieri, C. | |||||||||
Funding support | ![]()
| |||||||||
![]() | ![]() Title: Spatial control of the APC/C ensures the rapid degradation of cyclin B1. Authors: Luca Cirillo / Rose Young / Sapthaswaran Veerapathiran / Annalisa Roberti / Molly Martin / Azzah Abubacar / Camilla Perosa / Catherine Coates / Reyhan Muhammad / Theodoros I Roumeliotis / ...Authors: Luca Cirillo / Rose Young / Sapthaswaran Veerapathiran / Annalisa Roberti / Molly Martin / Azzah Abubacar / Camilla Perosa / Catherine Coates / Reyhan Muhammad / Theodoros I Roumeliotis / Jyoti S Choudhary / Claudio Alfieri / Jonathon Pines / ![]() Abstract: The proper control of mitosis depends on the ubiquitin-mediated degradation of the right mitotic regulator at the right time. This is effected by the Anaphase Promoting Complex/Cyclosome (APC/C) ...The proper control of mitosis depends on the ubiquitin-mediated degradation of the right mitotic regulator at the right time. This is effected by the Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase that is regulated by the Spindle Assembly Checkpoint (SAC). The SAC prevents the APC/C from recognising Cyclin B1, the essential anaphase and cytokinesis inhibitor, until all chromosomes are attached to the spindle. Once chromosomes are attached, Cyclin B1 is rapidly degraded to enable chromosome segregation and cytokinesis. We have a good understanding of how the SAC inhibits the APC/C, but relatively little is known about how the APC/C recognises Cyclin B1 as soon as the SAC is turned off. Here, by combining live-cell imaging, in vitro reconstitution biochemistry, and structural analysis by cryo-electron microscopy, we provide evidence that the rapid recognition of Cyclin B1 in metaphase requires spatial regulation of the APC/C. Using fluorescence cross-correlation spectroscopy, we find that Cyclin B1 and the APC/C primarily interact at the mitotic apparatus. We show that this is because Cyclin B1, like the APC/C, binds to nucleosomes, and identify an 'arginine-anchor' in the N-terminus as necessary and sufficient for binding to the nucleosome. Mutating the arginine anchor on Cyclin B1 reduces its interaction with the APC/C and delays its degradation: cells with the mutant, non-nucleosome-binding Cyclin B1 become aneuploid, demonstrating the physiological relevance of our findings. Together, our data demonstrate that mitotic chromosomes promote the efficient interaction between Cyclin B1 and the APC/C to ensure the timely degradation of Cyclin B1 and genomic stability. #1: Journal: Acta Crystallogr D Struct Biol / Year: 2018 Title: Real-space refinement in PHENIX for cryo-EM and crystallography. Authors: Pavel V Afonine / Billy K Poon / Randy J Read / Oleg V Sobolev / Thomas C Terwilliger / Alexandre Urzhumtsev / Paul D Adams / ![]() ![]() ![]() Abstract: This article describes the implementation of real-space refinement in the phenix.real_space_refine program from the PHENIX suite. The use of a simplified refinement target function enables very fast ...This article describes the implementation of real-space refinement in the phenix.real_space_refine program from the PHENIX suite. The use of a simplified refinement target function enables very fast calculation, which in turn makes it possible to identify optimal data-restraint weights as part of routine refinements with little runtime cost. Refinement of atomic models against low-resolution data benefits from the inclusion of as much additional information as is available. In addition to standard restraints on covalent geometry, phenix.real_space_refine makes use of extra information such as secondary-structure and rotamer-specific restraints, as well as restraints or constraints on internal molecular symmetry. The re-refinement of 385 cryo-EM-derived models available in the Protein Data Bank at resolutions of 6 Å or better shows significant improvement of the models and of the fit of these models to the target maps. | |||||||||
History |
|
-
Structure visualization
Structure viewer | Molecule: ![]() ![]() |
---|
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 384.2 KB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | 236.1 KB | Display | ![]() |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Arichive directory | ![]() ![]() | HTTPS FTP |
---|
-Related structure data
Related structure data | ![]() 50443MC ![]() 9fgqC C: citing same article ( M: map data used to model this data |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
-Protein , 4 types, 8 molecules AEBFCGDH
#2: Protein | Mass: 15437.167 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() Gene: HIST1H3A, H3FA, HIST1H3B, H3FL, HIST1H3C, H3FC, HIST1H3D, H3FB, HIST1H3E, H3FD, HIST1H3F, H3FI, HIST1H3G, H3FH, HIST1H3H, H3FK, HIST1H3I, H3FF, HIST1H3J, H3FJ Production host: ![]() ![]() #3: Protein | Mass: 11394.426 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() Gene: HIST1H4A, H4/A, H4FA, HIST1H4B, H4/I, H4FI, HIST1H4C, H4/G, H4FG, HIST1H4D, H4/B, H4FB, HIST1H4E, H4/J, H4FJ, HIST1H4F, H4/C, H4FC, HIST1H4H, H4/H, H4FH, HIST1H4I, H4/M, H4FM, HIST1H4J, H4/E, ...Gene: HIST1H4A, H4/A, H4FA, HIST1H4B, H4/I, H4FI, HIST1H4C, H4/G, H4FG, HIST1H4D, H4/B, H4FB, HIST1H4E, H4/J, H4FJ, HIST1H4F, H4/C, H4FC, HIST1H4H, H4/H, H4FH, HIST1H4I, H4/M, H4FM, HIST1H4J, H4/E, H4FE, HIST1H4K, H4/D, H4FD, HIST1H4L, H4/K, H4FK, HIST2H4A, H4/N, H4F2, H4FN, HIST2H4, HIST2H4B, H4/O, H4FO, HIST4H4 Production host: ![]() ![]() #4: Protein | Mass: 14151.523 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() #5: Protein | Mass: 13655.948 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() |
---|
-DNA chain , 2 types, 2 molecules IJ
#6: DNA chain | Mass: 45138.770 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() |
---|---|
#7: DNA chain | Mass: 45610.043 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() |
-Protein/peptide / Non-polymers , 2 types, 7 molecules KL

#1: Protein/peptide | Mass: 2407.878 Da / Num. of mol.: 2 / Source method: obtained synthetically / Details: The first 21 amino acids of cyclin B1 / Source: (synth.) ![]() #8: Water | ChemComp-HOH / | |
---|
-Details
Has protein modification | N |
---|
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-
Sample preparation
Component | Name: Cyclin B1 NTD bound to the acidic path of the NCP / Type: COMPLEX / Entity ID: #1-#7 / Source: RECOMBINANT | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source (natural) | Organism: ![]() | ||||||||||||||||||||
Source (recombinant) | Organism: ![]() ![]() | ||||||||||||||||||||
Buffer solution | pH: 7.5 | ||||||||||||||||||||
Buffer component |
| ||||||||||||||||||||
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES | ||||||||||||||||||||
Specimen support | Grid material: COPPER / Grid mesh size: 300 divisions/in. / Grid type: Quantifoil R1.2/1.3 | ||||||||||||||||||||
Vitrification | Instrument: FEI VITROBOT MARK III / Cryogen name: ETHANE / Humidity: 100 % / Chamber temperature: 277 K |
-
Electron microscopy imaging
Microscopy | Model: TFS GLACIOS |
---|---|
Electron gun | Electron source: ![]() |
Electron lens | Mode: BRIGHT FIELD / Nominal defocus max: 1600 nm / Nominal defocus min: 600 nm |
Image recording | Electron dose: 60 e/Å2 / Film or detector model: FEI FALCON IV (4k x 4k) |
-
Processing
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3D reconstruction | Resolution: 2.5 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 66184 / Symmetry type: POINT | ||||||||||||||||||||||||
Refinement | Cross valid method: NONE Stereochemistry target values: GeoStd + Monomer Library + CDL v1.2 | ||||||||||||||||||||||||
Displacement parameters | Biso mean: 61.72 Å2 | ||||||||||||||||||||||||
Refine LS restraints |
|