[English] 日本語

- PDB-9ei2: Cryo-EM structure of Human RNA polymerase II Elongation Complex b... -
+
Open data
-
Basic information
Entry | Database: PDB / ID: 9ei2 | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | Cryo-EM structure of Human RNA polymerase II Elongation Complex bound to an apo RECQL5 helicase (RECQL5 IRI Module focused-classified) | ||||||||||||||||||||||||||||||
![]() |
| ||||||||||||||||||||||||||||||
![]() | TRANSCRIPTION / TRANSFERASE/DNA/RNA / translocation / Human RNA polymerase II / RECQL5 helicase / IRI Module / TRANSFERASE-DNA-RNA complex | ||||||||||||||||||||||||||||||
Function / homology | ![]() mitotic DNA-templated DNA replication / microfibril binding / chromosome separation / cellular response to camptothecin / replication-born double-strand break repair via sister chromatid exchange / Abortive elongation of HIV-1 transcript in the absence of Tat / FGFR2 alternative splicing / transcription preinitiation complex / MicroRNA (miRNA) biogenesis / 3'-5' DNA helicase activity ...mitotic DNA-templated DNA replication / microfibril binding / chromosome separation / cellular response to camptothecin / replication-born double-strand break repair via sister chromatid exchange / Abortive elongation of HIV-1 transcript in the absence of Tat / FGFR2 alternative splicing / transcription preinitiation complex / MicroRNA (miRNA) biogenesis / 3'-5' DNA helicase activity / DNA 3'-5' helicase / Viral Messenger RNA Synthesis / Signaling by FGFR2 IIIa TM / DNA metabolic process / RNA Pol II CTD phosphorylation and interaction with CE during HIV infection / RNA Pol II CTD phosphorylation and interaction with CE / Formation of the Early Elongation Complex / Formation of the HIV-1 Early Elongation Complex / mRNA Capping / HIV Transcription Initiation / RNA Polymerase II HIV Promoter Escape / Transcription of the HIV genome / RNA Polymerase II Promoter Escape / RNA Polymerase II Transcription Pre-Initiation And Promoter Opening / RNA Polymerase II Transcription Initiation / RNA Polymerase II Transcription Initiation And Promoter Clearance / mRNA Splicing - Minor Pathway / RNA polymerase II complex binding / PIWI-interacting RNA (piRNA) biogenesis / negative regulation of transcription elongation by RNA polymerase II / Pausing and recovery of Tat-mediated HIV elongation / Tat-mediated HIV elongation arrest and recovery / Processing of Capped Intron-Containing Pre-mRNA / RNA polymerase II transcribes snRNA genes / HIV elongation arrest and recovery / Pausing and recovery of HIV elongation / Tat-mediated elongation of the HIV-1 transcript / negative regulation of double-strand break repair via homologous recombination / Formation of HIV-1 elongation complex containing HIV-1 Tat / Formation of HIV elongation complex in the absence of HIV Tat / DNA helicase activity / RNA polymerase II, core complex / RNA Polymerase II Transcription Elongation / : / Formation of RNA Pol II elongation complex / RNA Polymerase II Pre-transcription Events / DNA-directed RNA polymerase activity / Inhibition of DNA recombination at telomere / mRNA Splicing - Major Pathway / positive regulation of RNA splicing / replication fork / isomerase activity / helicase activity / TP53 Regulates Transcription of DNA Repair Genes / Transcriptional regulation by small RNAs / promoter-specific chromatin binding / DNA-templated transcription termination / double-strand break repair via homologous recombination / Transcription-Coupled Nucleotide Excision Repair (TC-NER) / Formation of TC-NER Pre-Incision Complex / kinase binding / Activation of anterior HOX genes in hindbrain development during early embryogenesis / : / : / : / : / : / : / DNA-directed RNA polymerase / Dual incision in TC-NER / Gap-filling DNA repair synthesis and ligation in TC-NER / cellular response to xenobiotic stimulus / mitotic cell cycle / chromosome / Hydrolases; Acting on ester bonds; Exoribonucleases producing 5'-phosphomonoesters / Estrogen-dependent gene expression / transcription by RNA polymerase II / forked DNA-dependent helicase activity / single-stranded 3'-5' DNA helicase activity / four-way junction helicase activity / double-stranded DNA helicase activity / DNA replication / hydrolase activity / cell division / RNA-directed RNA polymerase / DNA repair / RNA-directed RNA polymerase activity / ubiquitin protein ligase binding / regulation of DNA-templated transcription / magnesium ion binding / ATP hydrolysis activity / mitochondrion / DNA binding / RNA binding / zinc ion binding / nucleoplasm / ATP binding / metal ion binding / identical protein binding / nucleus Similarity search - Function | ||||||||||||||||||||||||||||||
Biological species | ![]() | ||||||||||||||||||||||||||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.8 Å | ||||||||||||||||||||||||||||||
![]() | Florez Ariza, A. / Lue, N. / Nogales, E. | ||||||||||||||||||||||||||||||
Funding support | ![]()
| ||||||||||||||||||||||||||||||
![]() | ![]() Title: Structural insights into transcriptional regulation by the helicase RECQL5. Authors: Alfredo Jose Florez Ariza / Nicholas Z Lue / Patricia Grob / Benjamin Kaeser / Jie Fang / Susanne A Kassube / Eva Nogales / ![]() Abstract: Transcription and its regulation pose a major challenge for genome stability. The helicase RECQL5 has been proposed as an important factor to help safeguard the genome, and is the only member of the ...Transcription and its regulation pose a major challenge for genome stability. The helicase RECQL5 has been proposed as an important factor to help safeguard the genome, and is the only member of the human RecQ helicase family that directly binds to RNA Polymerase II (Pol II) and affects its progression. RECQL5 mitigates transcription stress and genome instability in cells, yet the molecular mechanism underlying this phenomenon is unclear. Here, we employ cryo-electron microscopy (cryo-EM) to determine the structures of stalled Pol II elongation complexes (ECs) bound to RECQL5. Our structures reveal the molecular interactions stabilizing RECQL5 binding to the Pol II EC and highlight its role as a transcriptional roadblock. Additionally, we find that RECQL5 can modulate the Pol II translocation state. In its nucleotide-free state, RECQL5 mechanically twists the downstream DNA in the EC, and upon nucleotide binding, it undergoes a conformational change that allosterically induces Pol II towards a post-translocation state. We propose this mechanism may help restart Pol II elongation and therefore contribute to reduction of transcription stress. | ||||||||||||||||||||||||||||||
History |
|
-
Structure visualization
Structure viewer | Molecule: ![]() ![]() |
---|
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 123.2 KB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | 61 KB | Display | ![]() |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Arichive directory | ![]() ![]() | HTTPS FTP |
---|
-Related structure data
Related structure data | ![]() 48074MC ![]() 9ehzC ![]() 9ei1C ![]() 9ei3C ![]() 9ei4C M: map data used to model this data C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
#1: Protein | Mass: 217420.047 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() |
---|---|
#2: Protein | Mass: 109024.859 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() |
Has protein modification | N |
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-
Sample preparation
Component | Name: Stalled Human RNA polymerase II Elongation Complex bound to an apo RECQL5 helicase (RECQL5 IRI Module-focused classified) Type: COMPLEX / Entity ID: all / Source: MULTIPLE SOURCES |
---|---|
Molecular weight | Value: 0.49 MDa / Experimental value: NO |
Source (natural) | Organism: ![]() |
Buffer solution | pH: 8 |
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES |
Vitrification | Cryogen name: ETHANE |
-
Electron microscopy imaging
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: TFS KRIOS |
Electron gun | Electron source: ![]() |
Electron lens | Mode: BRIGHT FIELD / Nominal defocus max: 1800 nm / Nominal defocus min: 800 nm |
Image recording | Electron dose: 50 e/Å2 / Film or detector model: GATAN K3 (6k x 4k) |
-
Processing
EM software | Name: PHENIX / Version: 1.20.1_4487 / Category: model refinement | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION | ||||||||||||||||||||||||
3D reconstruction | Resolution: 2.8 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 103214 / Symmetry type: POINT | ||||||||||||||||||||||||
Refinement | Highest resolution: 2.8 Å Stereochemistry target values: REAL-SPACE (WEIGHTED MAP SUM AT ATOM CENTERS) | ||||||||||||||||||||||||
Refine LS restraints |
|