[English] 日本語
Yorodumi
- PDB-9e7r: CryoEM structure of PAR2 with GB88 -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 9e7r
TitleCryoEM structure of PAR2 with GB88
Components
  • (Guanine nucleotide-binding protein ...) x 3
  • Proteinase-activated receptor 2
  • scFv16
KeywordsMEMBRANE PROTEIN/IMMUNE SYSTEM / PAR2 / GB88 / MEMBRANE PROTEIN-IMMUNE SYSTEM complex
Function / homology
Function and homology information


positive regulation of neutrophil mediated killing of gram-negative bacterium / : / positive regulation of renin secretion into blood stream / positive regulation of eosinophil degranulation / mature conventional dendritic cell differentiation / leukocyte proliferation / positive regulation of glomerular filtration / regulation of chemokine (C-X-C motif) ligand 2 production / negative regulation of toll-like receptor 3 signaling pathway / positive regulation of toll-like receptor 3 signaling pathway ...positive regulation of neutrophil mediated killing of gram-negative bacterium / : / positive regulation of renin secretion into blood stream / positive regulation of eosinophil degranulation / mature conventional dendritic cell differentiation / leukocyte proliferation / positive regulation of glomerular filtration / regulation of chemokine (C-X-C motif) ligand 2 production / negative regulation of toll-like receptor 3 signaling pathway / positive regulation of toll-like receptor 3 signaling pathway / positive regulation of toll-like receptor 2 signaling pathway / thrombin-activated receptor activity / positive regulation of actin filament depolymerization / cell-cell junction maintenance / positive regulation of toll-like receptor 4 signaling pathway / positive regulation of pseudopodium assembly / T cell activation involved in immune response / positive regulation of cytokine production involved in immune response / positive regulation of phagocytosis, engulfment / negative regulation of chemokine production / neutrophil activation / positive regulation of leukocyte chemotaxis / positive regulation of chemotaxis / negative regulation of JNK cascade / establishment of endothelial barrier / regulation of JNK cascade / regulation of canonical NF-kappaB signal transduction / positive regulation of positive chemotaxis / leukocyte migration / positive regulation of Rho protein signal transduction / regulation of blood coagulation / pseudopodium / positive regulation of interleukin-10 production / negative regulation of tumor necrosis factor-mediated signaling pathway / G-protein alpha-subunit binding / negative regulation of insulin secretion / positive regulation of chemokine production / positive regulation of GTPase activity / Peptide ligand-binding receptors / positive regulation of superoxide anion generation / positive regulation of interleukin-1 beta production / positive regulation of interleukin-8 production / positive regulation of JNK cascade / G protein-coupled receptor activity / positive regulation of interleukin-6 production / Olfactory Signaling Pathway / Activation of the phototransduction cascade / positive regulation of type II interferon production / G beta:gamma signalling through PLC beta / Presynaptic function of Kainate receptors / Thromboxane signalling through TP receptor / G protein-coupled acetylcholine receptor signaling pathway / G-protein activation / Activation of G protein gated Potassium channels / Inhibition of voltage gated Ca2+ channels via Gbeta/gamma subunits / Prostacyclin signalling through prostacyclin receptor / G beta:gamma signalling through CDC42 / Glucagon signaling in metabolic regulation / G beta:gamma signalling through BTK / Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) / ADP signalling through P2Y purinoceptor 12 / Sensory perception of sweet, bitter, and umami (glutamate) taste / photoreceptor disc membrane / Glucagon-type ligand receptors / Adrenaline,noradrenaline inhibits insulin secretion / Vasopressin regulates renal water homeostasis via Aquaporins / blood coagulation / G alpha (z) signalling events / Glucagon-like Peptide-1 (GLP1) regulates insulin secretion / cellular response to catecholamine stimulus / vasodilation / ADORA2B mediated anti-inflammatory cytokines production / ADP signalling through P2Y purinoceptor 1 / G beta:gamma signalling through PI3Kgamma / Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding / adenylate cyclase-activating dopamine receptor signaling pathway / GPER1 signaling / Inactivation, recovery and regulation of the phototransduction cascade / cellular response to prostaglandin E stimulus / G-protein beta-subunit binding / heterotrimeric G-protein complex / G alpha (12/13) signalling events / sensory perception of taste / extracellular vesicle / signaling receptor complex adaptor activity / signaling receptor activity / Thrombin signalling through proteinase activated receptors (PARs) / GTPase binding / positive regulation of cytosolic calcium ion concentration / Ca2+ pathway / retina development in camera-type eye / protease binding / High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR in endothelial cells / fibroblast proliferation / G alpha (i) signalling events / G alpha (s) signalling events / phospholipase C-activating G protein-coupled receptor signaling pathway / G alpha (q) signalling events / defense response to virus / Ras protein signal transduction
Similarity search - Function
Protease-activated receptor 2 / Protease-activated receptor / G-protein, gamma subunit / G-protein gamma subunit domain profile. / G-protein gamma-like domain / G-protein gamma-like domain superfamily / GGL domain / G protein gamma subunit-like motifs / GGL domain / Guanine nucleotide-binding protein, beta subunit ...Protease-activated receptor 2 / Protease-activated receptor / G-protein, gamma subunit / G-protein gamma subunit domain profile. / G-protein gamma-like domain / G-protein gamma-like domain superfamily / GGL domain / G protein gamma subunit-like motifs / GGL domain / Guanine nucleotide-binding protein, beta subunit / G-protein, beta subunit / G protein-coupled receptor, rhodopsin-like / GPCR, rhodopsin-like, 7TM / G-protein coupled receptors family 1 profile. / 7 transmembrane receptor (rhodopsin family) / G-protein beta WD-40 repeat / WD40 repeat, conserved site / Trp-Asp (WD) repeats signature. / WD domain, G-beta repeat / Trp-Asp (WD) repeats profile. / Trp-Asp (WD) repeats circular profile. / WD40 repeats / WD40 repeat / WD40-repeat-containing domain superfamily / WD40/YVTN repeat-like-containing domain superfamily
Similarity search - Domain/homology
: / Proteinase-activated receptor 2 / Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2 / Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1
Similarity search - Component
Biological speciesHomo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.18 Å
AuthorsLyu, X. / Lyu, Z. / Malyutin, A.G. / McGrath, A.P. / Kang, Y.
Funding support1items
OrganizationGrant numberCountry
Not funded
CitationJournal: Nat Commun / Year: 2025
Title: Structural basis for the activation of proteinase-activated receptors PAR1 and PAR2.
Authors: Zongyang Lyu / Xiaoxuan Lyu / Andrey G Malyutin / Guliang Xia / Daniel Carney / Vinicius M Alves / Matthew Falk / Nidhi Arora / Hua Zou / Aaron P McGrath / Yanyong Kang /
Abstract: Members of the proteinase-activated receptor (PAR) subfamily of G protein-coupled receptors (GPCRs) play critical roles in processes like hemostasis, thrombosis, development, wound healing, ...Members of the proteinase-activated receptor (PAR) subfamily of G protein-coupled receptors (GPCRs) play critical roles in processes like hemostasis, thrombosis, development, wound healing, inflammation, and cancer progression. Comprising PAR1-PAR4, these receptors are specifically activated by protease cleavage at their extracellular amino terminus, revealing a 'tethered ligand' that self-activates the receptor. This triggers complex intracellular signaling via G proteins and beta-arrestins, linking external protease signals to cellular functions. To date, direct structural visualization of these ligand-receptor complexes has been limited. Here, we present structural snapshots of activated PAR1 and PAR2 bound to their endogenous tethered ligands, revealing a shallow and constricted orthosteric binding pocket. Comparisons with antagonist-bound structures show minimal conformational changes in the TM6 helix and larger movements of TM7 upon activation. These findings reveal a common activation mechanism for PAR1 and PAR2, highlighting critical residues involved in ligand recognition. Additionally, the structure of PAR2 bound to a pathway selective antagonist, GB88, demonstrates how potent orthosteric engagement can be achieved by a small molecule mimicking the endogenous tethered ligand's interactions.
History
DepositionNov 4, 2024Deposition site: RCSB / Processing site: RCSB
Revision 1.0May 7, 2025Provider: repository / Type: Initial release
Revision 1.0May 7, 2025Data content type: EM metadata / Data content type: EM metadata / Provider: repository / Type: Initial release
Revision 1.0May 7, 2025Data content type: Half map / Part number: 1 / Data content type: Half map / Provider: repository / Type: Initial release
Revision 1.0May 7, 2025Data content type: Half map / Part number: 2 / Data content type: Half map / Provider: repository / Type: Initial release
Revision 1.0May 7, 2025Data content type: Image / Data content type: Image / Provider: repository / Type: Initial release
Revision 1.0May 7, 2025Data content type: Primary map / Data content type: Primary map / Provider: repository / Type: Initial release
Revision 1.1May 21, 2025Group: Data collection / Category: em_admin / em_software / Item: _em_admin.last_update / _em_software.name
Revision 1.1May 21, 2025Data content type: EM metadata / Data content type: EM metadata / EM metadata / Group: Data processing / Experimental summary / Data content type: EM metadata / EM metadata / Category: em_admin / em_software / Data content type: EM metadata / EM metadata / Item: _em_admin.last_update / _em_software.name

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
G: Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2
R: Proteinase-activated receptor 2
A: Guanine nucleotide-binding protein G(q) subunit alpha chimera
B: Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1
E: scFv16
hetero molecules


Theoretical massNumber of molelcules
Total (without water)151,1406
Polymers150,5935
Non-polymers5471
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy, not applicable
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

-
Guanine nucleotide-binding protein ... , 3 types, 3 molecules GAB

#1: Protein Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2 / G gamma-I


Mass: 6504.446 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: GNG2 / Production host: Spodoptera frugiperda (fall armyworm) / References: UniProt: P59768
#3: Protein Guanine nucleotide-binding protein G(q) subunit alpha chimera


Mass: 41972.578 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Spodoptera frugiperda (fall armyworm)
#4: Protein Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 / Transducin beta chain 1


Mass: 37285.734 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: GNB1 / Production host: Spodoptera frugiperda (fall armyworm) / References: UniProt: P62873

-
Protein / Antibody / Non-polymers , 3 types, 3 molecules RE

#2: Protein Proteinase-activated receptor 2 / PAR-2 / Coagulation factor II receptor-like 1 / G-protein coupled receptor 11 / Thrombin receptor-like 1


Mass: 38150.348 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: F2RL1, GPR11, PAR2 / Production host: Spodoptera frugiperda (fall armyworm) / References: UniProt: P55085
#5: Antibody scFv16


Mass: 26679.721 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Spodoptera frugiperda (fall armyworm)
#6: Chemical ChemComp-A1BF3 / N-[(2S)-3-cyclohexyl-1-{[(2S,3S)-3-methyl-1-oxo-1-(spiro[indene-1,4'-piperidin]-1'-yl)pentan-2-yl]amino}-1-oxopropan-2-yl]-1,2-oxazole-5-carboxamide


Mass: 546.700 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: C32H42N4O4 / Feature type: SUBJECT OF INVESTIGATION

-
Details

Has ligand of interestY
Has protein modificationY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Complex of PAR2 with G proteins and GB88 / Type: COMPLEX / Entity ID: #1-#5 / Source: RECOMBINANT
Molecular weightExperimental value: NO
Source (natural)Organism: Homo sapiens (human)
Source (recombinant)Organism: Spodoptera frugiperda (fall armyworm)
Buffer solutionpH: 7
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
Specimen supportGrid material: GOLD / Grid mesh size: 300 divisions/in. / Grid type: Quantifoil
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

MicroscopyModel: TFS GLACIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 200 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD / Nominal defocus max: 2000 nm / Nominal defocus min: 800 nm
Image recordingElectron dose: 45 e/Å2 / Film or detector model: TFS FALCON 4i (4k x 4k)

-
Processing

EM softwareName: PHENIX / Category: model refinement
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 3.18 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 301011 / Symmetry type: POINT
RefinementHighest resolution: 3.18 Å
Stereochemistry target values: REAL-SPACE (WEIGHTED MAP SUM AT ATOM CENTERS)
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.0038303
ELECTRON MICROSCOPYf_angle_d0.51811279
ELECTRON MICROSCOPYf_dihedral_angle_d4.9151140
ELECTRON MICROSCOPYf_chiral_restr0.041286
ELECTRON MICROSCOPYf_plane_restr0.0041419

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more