National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)
R35GM141461
米国
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)
R01GM069909
米国
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)
T32GM008203
米国
Welch Foundation
I-1532
米国
Cancer Prevention and Research Institute of Texas (CPRIT)
RP220582
米国
引用
ジャーナル: J Cell Biol / 年: 2025 タイトル: Nap1 and Kap114 co-chaperone H2A-H2B and facilitate targeted histone release in the nucleus. 著者: Ho Yee Joyce Fung / Jenny Jiou / Ashley B Niesman / Natalia E Bernardes / Yuh Min Chook / 要旨: Core histones, synthesized and processed in the cytoplasm, must be chaperoned as they are transported into the nucleus for nucleosome assembly. The importin Kap114 transports H2A-H2B into the yeast ...Core histones, synthesized and processed in the cytoplasm, must be chaperoned as they are transported into the nucleus for nucleosome assembly. The importin Kap114 transports H2A-H2B into the yeast nucleus, where RanGTP facilitates histone release. Kap114 and H2A-H2B also bind the histone chaperone Nap1, but how Nap1 and Kap114 cooperate in transport and nucleosome assembly remains unclear. Here, biochemical and structural analyses show that Kap114, H2A-H2B, and a Nap1 dimer (Nap12) associate in the absence and presence of RanGTP to form equimolar complexes. A previous study had shown that RanGTP reduces Kap114's ability to chaperone H2A-H2B, but a new cryo-EM structure of the Nap12•H2A-H2B•Kap114•RanGTP complex explains how both Kap114 and Nap12 interact with H2A-H2B, restoring its chaperoning within the assembly while effectively depositing it into nucleosomes. Together, our results suggest that Kap114 and Nap12 provide a sheltered path that facilitates the transfer of H2A-H2B from Kap114 to Nap12, ultimately directing its specific deposition into nucleosomes.
#1: ジャーナル: bioRxiv / 年: 2024 タイトル: Nap1 and Kap114 co-chaperone H2A-H2B and facilitate targeted histone release in the nucleus. 著者: Ho Yee Joyce Fung / Ashley B Neisman / Natalia E Bernardes / Jenny Jiou / Yuh Min Chook 要旨: Core histones are synthesized and processed in the cytoplasm before transport into the nucleus for assembly into nucleosomes; however, they must also be chaperoned as free histones are toxic. The ...Core histones are synthesized and processed in the cytoplasm before transport into the nucleus for assembly into nucleosomes; however, they must also be chaperoned as free histones are toxic. The importin Kap114 binds and transports histone H2A-H2B into the yeast nucleus, where RanGTP facilitates H2A-H2B release. Kap114 and H2A-H2B also bind the Nap1 histone chaperone, which is found in both the cytoplasm and the nucleus, but how Nap1 and Kap114 cooperate in H2A-H2B processing and nucleosome assembly has been unclear. To understand these mechanisms, we used biochemical and structural analyses to reveal how Nap1, Kap114, H2A-H2B and RanGTP interact. We show that Kap114, H2A-H2B and a Nap1 dimer (Nap1 ) assemble into a 1:1:1 ternary complex. Cryogenic electron microscopy revealed two distinct Kap114/Nap1 /H2A-H2B structures: one of H2A-H2B sandwiched between Nap1 and Kap114, and another in which Nap1 bound to the Kap114·H2A-H2B complex without contacting H2A-H2B. Another Nap1 ·H2A-H2B·Kap114·Ran structure reveals the nuclear complex. Mutagenesis revealed shared critical interfaces in all three structures. Consistent with structural findings, DNA competition experiments demonstrated that Kap114 and Nap1 together chaperone H2A-H2B better than either protein alone. When RanGTP is present, Kap114's chaperoning activity diminishes. However, the presence of Nap1 within the Nap1 ·H2A-H2B·Kap114·Ran quaternary complex restores its ability to chaperone H2A-H2B. This complex effectively deposits H2A-H2B into nucleosomes. Together, these findings suggest that Kap114 and Nap12 provide a sheltered path from cytoplasm to nucleus, facilitating the transfer of H2A-H2B from Kap114 to Nap1 , ultimately directing its specific deposition into nucleosomes.