[English] 日本語

- PDB-8s54: RNA polymerase II early elongation complex bound to TFIIE and TFI... -
+
Open data
-
Basic information
Entry | Database: PDB / ID: 8s54 | ||||||
---|---|---|---|---|---|---|---|
Title | RNA polymerase II early elongation complex bound to TFIIE and TFIIF - state b (composite structure) | ||||||
![]() |
| ||||||
![]() | TRANSCRIPTION / RNA polymerase II / promoter escape / de novo transcription | ||||||
Function / homology | ![]() transcription factor TFIIE complex / phosphatase activator activity / TFIIF-class transcription factor complex binding / transcription factor TFIIF complex / Formation of RNA Pol II elongation complex / Formation of the Early Elongation Complex / Transcriptional regulation by small RNAs / RNA Polymerase II Pre-transcription Events / TP53 Regulates Transcription of DNA Repair Genes / FGFR2 alternative splicing ...transcription factor TFIIE complex / phosphatase activator activity / TFIIF-class transcription factor complex binding / transcription factor TFIIF complex / Formation of RNA Pol II elongation complex / Formation of the Early Elongation Complex / Transcriptional regulation by small RNAs / RNA Polymerase II Pre-transcription Events / TP53 Regulates Transcription of DNA Repair Genes / FGFR2 alternative splicing / RNA polymerase II transcribes snRNA genes / mRNA Capping / mRNA Splicing - Minor Pathway / Processing of Capped Intron-Containing Pre-mRNA / RNA Polymerase II Promoter Escape / RNA Polymerase II Transcription Pre-Initiation And Promoter Opening / RNA Polymerase II Transcription Initiation / RNA Polymerase II Transcription Elongation / RNA Polymerase II Transcription Initiation And Promoter Clearance / RNA Pol II CTD phosphorylation and interaction with CE / Estrogen-dependent gene expression / Formation of TC-NER Pre-Incision Complex / Dual incision in TC-NER / Gap-filling DNA repair synthesis and ligation in TC-NER / mRNA Splicing - Major Pathway / nuclear lumen / RNA polymerase II general transcription initiation factor binding / Abortive elongation of HIV-1 transcript in the absence of Tat / FGFR2 alternative splicing / Viral Messenger RNA Synthesis / Signaling by FGFR2 IIIa TM / RNA polymerase II general transcription initiation factor activity / transcription factor TFIID complex / RNA Pol II CTD phosphorylation and interaction with CE during HIV infection / RNA Pol II CTD phosphorylation and interaction with CE / Formation of the Early Elongation Complex / Formation of the HIV-1 Early Elongation Complex / mRNA Capping / HIV Transcription Initiation / RNA Polymerase II HIV Promoter Escape / Transcription of the HIV genome / RNA Polymerase II Promoter Escape / RNA Polymerase II Transcription Pre-Initiation And Promoter Opening / RNA Polymerase II Transcription Initiation / RNA Polymerase II Transcription Initiation And Promoter Clearance / mRNA Splicing - Minor Pathway / maintenance of transcriptional fidelity during transcription elongation by RNA polymerase II / Pausing and recovery of Tat-mediated HIV elongation / Tat-mediated HIV elongation arrest and recovery / Processing of Capped Intron-Containing Pre-mRNA / RNA polymerase II transcribes snRNA genes / HIV elongation arrest and recovery / Pausing and recovery of HIV elongation / Tat-mediated elongation of the HIV-1 transcript / transcription by RNA polymerase III / transcription by RNA polymerase I / Formation of HIV-1 elongation complex containing HIV-1 Tat / RNA polymerase I complex / transcription elongation by RNA polymerase I / RNA polymerase III complex / Formation of HIV elongation complex in the absence of HIV Tat / transcription-coupled nucleotide-excision repair / RNA polymerase II, core complex / tRNA transcription by RNA polymerase III / : / RNA Polymerase II Transcription Elongation / Formation of RNA Pol II elongation complex / translation initiation factor binding / RNA Polymerase II Pre-transcription Events / negative regulation of protein binding / DNA-directed RNA polymerase activity / DNA-directed RNA polymerase complex / mRNA Splicing - Major Pathway / positive regulation of transcription elongation by RNA polymerase II / transcription initiation at RNA polymerase II promoter / TP53 Regulates Transcription of DNA Repair Genes / DNA-templated transcription initiation / transcription elongation by RNA polymerase II / promoter-specific chromatin binding / response to virus / ribonucleoside binding / : / : / : / : / : / : / DNA-directed RNA polymerase / fibrillar center / cell junction / microtubule cytoskeleton / protein phosphatase binding / Estrogen-dependent gene expression / transcription by RNA polymerase II / nucleic acid binding / forked DNA-dependent helicase activity / single-stranded 3'-5' DNA helicase activity / four-way junction helicase activity / double-stranded DNA helicase activity / chromosome, telomeric region Similarity search - Function | ||||||
Biological species | ![]() ![]() ![]() ![]() | ||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.4 Å | ||||||
![]() | Zhan, Y. / Grabber, F. / Oberbeckmann, E. / Dienemann, C. / Cramer, P. | ||||||
Funding support | ![]()
| ||||||
![]() | ![]() Title: Three-step mechanism of promoter escape by RNA polymerase II. Authors: Yumeng Zhan / Frauke Grabbe / Elisa Oberbeckmann / Christian Dienemann / Patrick Cramer / ![]() Abstract: The transition from transcription initiation to elongation is highly regulated in human cells but remains incompletely understood at the structural level. In particular, it is unclear how ...The transition from transcription initiation to elongation is highly regulated in human cells but remains incompletely understood at the structural level. In particular, it is unclear how interactions between RNA polymerase II (RNA Pol II) and initiation factors are broken to enable promoter escape. Here, we reconstitute RNA Pol II promoter escape in vitro and determine high-resolution structures of initially transcribing complexes containing 8-, 10-, and 12-nt ordered RNAs and two elongation complexes containing 14-nt RNAs. We suggest that promoter escape occurs in three major steps. First, the growing RNA displaces the B-reader element of the initiation factor TFIIB without evicting TFIIB. Second, the rewinding of the transcription bubble coincides with the eviction of TFIIA, TFIIB, and TBP. Third, the binding of DSIF and NELF facilitates TFIIE and TFIIH dissociation, establishing the paused elongation complex. This three-step model for promoter escape fills a gap in our understanding of the initiation-elongation transition of RNA Pol II transcription. | ||||||
History |
|
-
Structure visualization
Structure viewer | Molecule: ![]() ![]() |
---|
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 868.8 KB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | Display | ![]() | |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Summary document | ![]() | 508.3 KB | Display | ![]() |
---|---|---|---|---|
Full document | ![]() | 548.3 KB | Display | |
Data in XML | ![]() | 83.5 KB | Display | |
Data in CIF | ![]() | 131.3 KB | Display | |
Arichive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 19720MC ![]() 8s51C ![]() 8s52C ![]() 8s55C ![]() 8s5nC M: map data used to model this data C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
-DNA-directed RNA polymerase ... , 7 types, 7 molecules ABCEGIK
#1: Protein | Mass: 218889.547 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() |
---|---|
#2: Protein | Mass: 147938.594 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() |
#3: Protein | Mass: 31439.074 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() |
#5: Protein | Mass: 24644.318 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() |
#7: Protein | Mass: 19314.283 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() |
#9: Protein | Mass: 14541.221 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() |
#11: Protein | Mass: 13310.284 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() |
-RNA polymerase II subunit ... , 2 types, 2 molecules DL
#4: Protein | Mass: 20962.621 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() |
---|---|
#12: Protein | Mass: 7018.244 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() |
-DNA-directed RNA polymerases I, II, and III subunit ... , 3 types, 3 molecules FHJ
#6: Protein | Mass: 14477.001 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() |
---|---|
#8: Protein | Mass: 17162.273 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() |
#10: Protein | Mass: 7655.123 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() |
-DNA chain , 2 types, 2 molecules NT
#13: DNA chain | Mass: 43236.555 Da / Num. of mol.: 1 / Source method: obtained synthetically / Source: (synth.) ![]() |
---|---|
#17: DNA chain | Mass: 42569.098 Da / Num. of mol.: 1 / Source method: obtained synthetically / Source: (synth.) ![]() |
-General transcription factor IIF subunit ... , 2 types, 2 molecules QR
#15: Protein | Mass: 58343.578 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() |
---|---|
#16: Protein | Mass: 28427.309 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() |
-RNA chain / Protein , 2 types, 2 molecules PW
#14: RNA chain | Mass: 4427.756 Da / Num. of mol.: 1 / Source method: obtained synthetically / Source: (synth.) ![]() |
---|---|
#18: Protein | Mass: 49516.094 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() |
-Non-polymers , 2 types, 10 molecules 


#19: Chemical | ChemComp-ZN / #20: Chemical | ChemComp-MG / | |
---|
-Details
Has ligand of interest | Y |
---|
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-
Sample preparation
Component |
| ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source (natural) |
| ||||||||||||||||||||||||||||||
Source (recombinant) |
| ||||||||||||||||||||||||||||||
Buffer solution | pH: 7.5 | ||||||||||||||||||||||||||||||
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES | ||||||||||||||||||||||||||||||
Vitrification | Cryogen name: ETHANE |
-
Electron microscopy imaging
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: ![]() |
Electron lens | Mode: BRIGHT FIELD / Nominal defocus max: 1700 nm / Nominal defocus min: 700 nm |
Image recording | Electron dose: 40 e/Å2 / Film or detector model: GATAN K3 (6k x 4k) |
-
Processing
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION |
---|---|
3D reconstruction | Resolution: 3.4 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 50000 Details: Different number of particles was used for different focused refined maps, as detailed in the manuscript. Symmetry type: POINT |