[English] 日本語

- PDB-8pix: Cryo EM structure of the type 3C polymorph of alpha-synuclein at ... -
+
Open data
-
Basic information
Entry | Database: PDB / ID: 8pix | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | Cryo EM structure of the type 3C polymorph of alpha-synuclein at low pH. | |||||||||
![]() | Alpha-synuclein | |||||||||
![]() | PROTEIN FIBRIL / amyloid / polymorphism | |||||||||
Function / homology | ![]() negative regulation of mitochondrial electron transport, NADH to ubiquinone / : / neutral lipid metabolic process / regulation of acyl-CoA biosynthetic process / negative regulation of dopamine uptake involved in synaptic transmission / negative regulation of norepinephrine uptake / response to desipramine / positive regulation of SNARE complex assembly / positive regulation of hydrogen peroxide catabolic process / supramolecular fiber ...negative regulation of mitochondrial electron transport, NADH to ubiquinone / : / neutral lipid metabolic process / regulation of acyl-CoA biosynthetic process / negative regulation of dopamine uptake involved in synaptic transmission / negative regulation of norepinephrine uptake / response to desipramine / positive regulation of SNARE complex assembly / positive regulation of hydrogen peroxide catabolic process / supramolecular fiber / regulation of synaptic vesicle recycling / mitochondrial membrane organization / negative regulation of chaperone-mediated autophagy / regulation of reactive oxygen species biosynthetic process / negative regulation of platelet-derived growth factor receptor signaling pathway / positive regulation of protein localization to cell periphery / negative regulation of exocytosis / regulation of glutamate secretion / dopamine biosynthetic process / SNARE complex assembly / regulation of norepinephrine uptake / response to iron(II) ion / positive regulation of neurotransmitter secretion / positive regulation of inositol phosphate biosynthetic process / regulation of locomotion / negative regulation of dopamine metabolic process / regulation of macrophage activation / transporter regulator activity / negative regulation of microtubule polymerization / synaptic vesicle transport / synaptic vesicle priming / dopamine uptake involved in synaptic transmission / protein kinase inhibitor activity / mitochondrial ATP synthesis coupled electron transport / regulation of dopamine secretion / dynein complex binding / positive regulation of receptor recycling / negative regulation of thrombin-activated receptor signaling pathway / cuprous ion binding / nuclear outer membrane / response to magnesium ion / positive regulation of endocytosis / positive regulation of exocytosis / synaptic vesicle exocytosis / kinesin binding / enzyme inhibitor activity / synaptic vesicle endocytosis / cysteine-type endopeptidase inhibitor activity / negative regulation of serotonin uptake / response to type II interferon / regulation of presynapse assembly / alpha-tubulin binding / beta-tubulin binding / phospholipase binding / behavioral response to cocaine / supramolecular fiber organization / cellular response to copper ion / phospholipid metabolic process / cellular response to fibroblast growth factor stimulus / inclusion body / axon terminus / cellular response to epinephrine stimulus / Hsp70 protein binding / response to interleukin-1 / regulation of microtubule cytoskeleton organization / positive regulation of release of sequestered calcium ion into cytosol / SNARE binding / adult locomotory behavior / excitatory postsynaptic potential / phosphoprotein binding / protein tetramerization / microglial cell activation / fatty acid metabolic process / regulation of long-term neuronal synaptic plasticity / ferrous iron binding / synapse organization / protein destabilization / PKR-mediated signaling / phospholipid binding / receptor internalization / tau protein binding / long-term synaptic potentiation / terminal bouton / positive regulation of inflammatory response / synaptic vesicle membrane / actin cytoskeleton / actin binding / cellular response to oxidative stress / growth cone / cell cortex / histone binding / neuron apoptotic process / response to lipopolysaccharide / microtubule binding / molecular adaptor activity / chemical synaptic transmission / amyloid fibril formation / mitochondrial outer membrane / negative regulation of neuron apoptotic process / lysosome Similarity search - Function | |||||||||
Biological species | ![]() | |||||||||
Method | ELECTRON MICROSCOPY / helical reconstruction / cryo EM / Resolution: 3.41 Å | |||||||||
![]() | Frey, L. / Qureshi, B.M. / Kwiatkowski, W. / Rhyner, D. / Greenwald, J. / Riek, R. | |||||||||
Funding support | ![]()
| |||||||||
![]() | ![]() Title: On the pH-dependence of α-synuclein amyloid polymorphism and the role of secondary nucleation in seed-based amyloid propagation. Authors: Lukas Frey / Dhiman Ghosh / Bilal M Qureshi / David Rhyner / Ricardo Guerrero-Ferreira / Aditya Pokharna / Witek Kwiatkowski / Tetiana Serdiuk / Paola Picotti / Roland Riek / Jason Greenwald / ![]() ![]() Abstract: The aggregation of the protein α-synuclein is closely associated with several neurodegenerative disorders and as such the structures of the amyloid fibril aggregates have high scientific and medical ...The aggregation of the protein α-synuclein is closely associated with several neurodegenerative disorders and as such the structures of the amyloid fibril aggregates have high scientific and medical significance. However, there are dozens of unique atomic-resolution structures of these aggregates, and such a highly polymorphic nature of the α-synuclein fibrils hampers efforts in disease-relevant in vitro studies on α-synuclein amyloid aggregation. In order to better understand the factors that affect polymorph selection, we studied the structures of α-synuclein fibrils in vitro as a function of pH and buffer using cryo-EM helical reconstruction. We find that in the physiological range of pH 5.8-7.4, a pH-dependent selection between Type 1, 2, and 3 polymorphs occurs. Our results indicate that even in the presence of seeds, the polymorph selection during aggregation is highly dependent on the buffer conditions, attributed to the non-polymorph-specific nature of secondary nucleation. We also uncovered two new polymorphs that occur at pH 7.0 in phosphate-buffered saline. The first is a monofilament Type 1 fibril that highly resembles the structure of the juvenile-onset synucleinopathy polymorph found in patient-derived material. The second is a new Type 5 polymorph that resembles a polymorph that has been recently reported in a study that used diseased tissues to seed aggregation. Taken together, our results highlight the shallow amyloid energy hypersurface that can be altered by subtle changes in the environment, including the pH which is shown to play a major role in polymorph selection and in many cases appears to be the determining factor in seeded aggregation. The results also suggest the possibility of producing disease-relevant structure in vitro. #1: ![]() Title: On the pH-dependence of alpha-synuclein amyloid polymorphism and the role of secondary nucleation in seed-based amyloid propagation Authors: Frey, L. / Ghosh, D. / Qureshi, B.M. / Rhyner, D. / Pokharna, A. / Guerrero-Ferreira, R. / Kwiatkowski, W. / Serdiuk, T. / Picotti, P. / Riek, R. / Greenwald, J. | |||||||||
History |
|
-
Structure visualization
Structure viewer | Molecule: ![]() ![]() |
---|
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 150.3 KB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | 95.2 KB | Display | ![]() |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Summary document | ![]() | 997.3 KB | Display | ![]() |
---|---|---|---|---|
Full document | ![]() | 997.1 KB | Display | |
Data in XML | ![]() | 29.9 KB | Display | |
Data in CIF | ![]() | 44.8 KB | Display | |
Arichive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 17693MC ![]() 8pjoC ![]() 8pk2C ![]() 8pk4C ![]() 9fypC C: citing same article ( M: map data used to model this data |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
#1: Protein | Mass: 14476.108 Da / Num. of mol.: 10 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() |
---|
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: FILAMENT / 3D reconstruction method: helical reconstruction |
-
Sample preparation
Component | Name: alpha-synuclein amyloid fibril / Type: COMPLEX / Entity ID: all / Source: RECOMBINANT | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Molecular weight | Experimental value: NO | ||||||||||||||||||||
Source (natural) | Organism: ![]() | ||||||||||||||||||||
Source (recombinant) | Organism: ![]() ![]() | ||||||||||||||||||||
Buffer solution | pH: 5.8 | ||||||||||||||||||||
Buffer component |
| ||||||||||||||||||||
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES | ||||||||||||||||||||
Vitrification | Cryogen name: ETHANE-PROPANE |
-
Electron microscopy imaging
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: ![]() |
Electron lens | Mode: BRIGHT FIELD / Nominal magnification: 130000 X / Nominal defocus max: 3000 nm / Nominal defocus min: 800 nm / Cs: 2.7 mm / C2 aperture diameter: 70 µm / Alignment procedure: COMA FREE |
Specimen holder | Cryogen: NITROGEN / Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER |
Image recording | Average exposure time: 1 sec. / Electron dose: 67 e/Å2 / Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k) / Num. of real images: 3127 |
EM imaging optics | Energyfilter name: GIF Bioquantum / Energyfilter slit width: 20 eV |
-
Processing
EM software |
| ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION | ||||||||||||||||
Helical symmerty | Angular rotation/subunit: -0.995 ° / Axial rise/subunit: 4.772 Å / Axial symmetry: C2 | ||||||||||||||||
3D reconstruction | Resolution: 3.41 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 28022 / Symmetry type: HELICAL | ||||||||||||||||
Atomic model building | Protocol: AB INITIO MODEL / Space: REAL |