[English] 日本語

- PDB-7ter: Cryo-EM structure of GluN1b-2B NMDAR in complex with Fab5 non-act... -
+
Open data
-
Basic information
Entry | Database: PDB / ID: 7ter | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | Cryo-EM structure of GluN1b-2B NMDAR in complex with Fab5 non-active2 conformation | |||||||||
![]() |
| |||||||||
![]() | SIGNALING PROTEIN/IMMUNE SYSTEM / channel / antibody / SIGNALING PROTEIN-IMMUNE SYSTEM complex | |||||||||
Function / homology | ![]() cellular response to curcumin / cellular response to corticosterone stimulus / cellular response to magnesium starvation / sensory organ development / pons maturation / positive regulation of Schwann cell migration / regulation of cell communication / sensitization / regulation of cAMP/PKA signal transduction / EPHB-mediated forward signaling ...cellular response to curcumin / cellular response to corticosterone stimulus / cellular response to magnesium starvation / sensory organ development / pons maturation / positive regulation of Schwann cell migration / regulation of cell communication / sensitization / regulation of cAMP/PKA signal transduction / EPHB-mediated forward signaling / auditory behavior / Assembly and cell surface presentation of NMDA receptors / olfactory learning / conditioned taste aversion / dendritic branch / response to hydrogen sulfide / regulation of respiratory gaseous exchange / response to other organism / positive regulation of inhibitory postsynaptic potential / protein localization to postsynaptic membrane / apical dendrite / regulation of ARF protein signal transduction / response to methylmercury / fear response / transmitter-gated monoatomic ion channel activity / response to glycine / propylene metabolic process / response to carbohydrate / cellular response to dsRNA / interleukin-1 receptor binding / negative regulation of dendritic spine maintenance / cellular response to lipid / positive regulation of glutamate secretion / response to growth hormone / Synaptic adhesion-like molecules / regulation of monoatomic cation transmembrane transport / NMDA glutamate receptor activity / RAF/MAP kinase cascade / voltage-gated monoatomic cation channel activity / response to manganese ion / neurotransmitter receptor complex / NMDA selective glutamate receptor complex / ligand-gated sodium channel activity / response to morphine / calcium ion transmembrane import into cytosol / glutamate binding / regulation of axonogenesis / neuromuscular process / regulation of dendrite morphogenesis / protein heterotetramerization / regulation of synapse assembly / male mating behavior / heterocyclic compound binding / glycine binding / positive regulation of reactive oxygen species biosynthetic process / receptor clustering / parallel fiber to Purkinje cell synapse / positive regulation of calcium ion transport into cytosol / suckling behavior / regulation of postsynaptic membrane potential / response to amine / small molecule binding / startle response / social behavior / monoatomic cation transmembrane transport / associative learning / : / behavioral response to pain / response to magnesium ion / regulation of MAPK cascade / regulation of neuronal synaptic plasticity / action potential / cellular response to glycine / extracellularly glutamate-gated ion channel activity / monoatomic cation transport / excitatory synapse / positive regulation of excitatory postsynaptic potential / positive regulation of dendritic spine maintenance / monoatomic ion channel complex / Unblocking of NMDA receptors, glutamate binding and activation / long-term memory / cellular response to manganese ion / behavioral fear response / postsynaptic density, intracellular component / glutamate receptor binding / neuron development / synaptic cleft / prepulse inhibition / multicellular organismal response to stress / detection of mechanical stimulus involved in sensory perception of pain / phosphatase binding / response to electrical stimulus / monoatomic cation channel activity / glutamate-gated receptor activity / response to mechanical stimulus / calcium ion homeostasis / response to fungicide / D2 dopamine receptor binding / cell adhesion molecule binding / ionotropic glutamate receptor binding Similarity search - Function | |||||||||
Biological species | ![]() ![]() ![]() ![]() | |||||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 5.23 Å | |||||||||
![]() | Tajima, N. / Furukawa, H. | |||||||||
Funding support | ![]()
| |||||||||
![]() | ![]() Title: Development and characterization of functional antibodies targeting NMDA receptors. Authors: Nami Tajima / Noriko Simorowski / Remy A Yovanno / Michael C Regan / Kevin Michalski / Ricardo Gómez / Albert Y Lau / Hiro Furukawa / ![]() Abstract: N-methyl-D-aspartate receptors (NMDARs) are critically involved in basic brain functions and neurodegeneration as well as tumor invasiveness. Targeting specific subtypes of NMDARs with distinct ...N-methyl-D-aspartate receptors (NMDARs) are critically involved in basic brain functions and neurodegeneration as well as tumor invasiveness. Targeting specific subtypes of NMDARs with distinct activities has been considered an effective therapeutic strategy for neurological disorders and diseases. However, complete elimination of off-target effects of small chemical compounds has been challenging and thus, there is a need to explore alternative strategies for targeting NMDAR subtypes. Here we report identification of a functional antibody that specifically targets the GluN1-GluN2B NMDAR subtype and allosterically down-regulates ion channel activity as assessed by electrophysiology. Through biochemical analysis, x-ray crystallography, single-particle electron cryomicroscopy, and molecular dynamics simulations, we show that this inhibitory antibody recognizes the amino terminal domain of the GluN2B subunit and increases the population of the non-active conformational state. The current study demonstrates that antibodies may serve as specific reagents to regulate NMDAR functions for basic research and therapeutic objectives. | |||||||||
History |
|
-
Structure visualization
Movie |
![]() |
---|---|
Structure viewer | Molecule: ![]() ![]() |
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 699.3 KB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | 573.2 KB | Display | ![]() |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Arichive directory | ![]() ![]() | HTTPS FTP |
---|
-Related structure data
Related structure data | ![]() 25850MC ![]() 7te4C ![]() 7te6C ![]() 7te9C ![]() 7tebC ![]() 7teeC ![]() 7teqC ![]() 7tesC ![]() 7tetC M: map data used to model this data C: citing same article ( |
---|---|
Similar structure data |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
#1: Protein | Mass: 96944.891 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() ![]() #2: Protein | Mass: 98797.820 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() ![]() #3: Antibody | Mass: 23844.684 Da / Num. of mol.: 2 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() #4: Antibody | Mass: 23855.256 Da / Num. of mol.: 2 / Source method: isolated from a natural source / Source: (natural) ![]() ![]() Has protein modification | Y | |
---|
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-
Sample preparation
Component | Name: GluN1b-2B NMDAR complexed to Fab5 / Type: COMPLEX / Entity ID: all / Source: MULTIPLE SOURCES |
---|---|
Source (natural) | Organism: ![]() ![]() |
Source (recombinant) | Organism: ![]() ![]() |
Buffer solution | pH: 7.5 |
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES |
Vitrification | Cryogen name: ETHANE |
-
Electron microscopy imaging
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: ![]() |
Electron lens | Mode: OTHER / Nominal defocus max: 3000 nm / Nominal defocus min: 1500 nm |
Image recording | Electron dose: 60 e/Å2 / Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k) |
-
Processing
CTF correction | Type: PHASE FLIPPING ONLY |
---|---|
3D reconstruction | Resolution: 5.23 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 39661 / Symmetry type: POINT |