[English] 日本語
Yorodumi
- PDB-7otv: DNA-PKcs in complex with wortmannin -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7otv
TitleDNA-PKcs in complex with wortmannin
ComponentsDNA-dependent protein kinase catalytic subunit,DNA-dependent protein kinase catalytic subunit,DNA-PKcs
KeywordsDNA BINDING PROTEIN / complex / inhibitor / DNA repair
Function / homology
Function and homology information


positive regulation of platelet formation / T cell receptor V(D)J recombination / pro-B cell differentiation / small-subunit processome assembly / positive regulation of lymphocyte differentiation / DNA-dependent protein kinase activity / histone H2AXS139 kinase activity / DNA-dependent protein kinase complex / immature B cell differentiation / DNA-dependent protein kinase-DNA ligase 4 complex ...positive regulation of platelet formation / T cell receptor V(D)J recombination / pro-B cell differentiation / small-subunit processome assembly / positive regulation of lymphocyte differentiation / DNA-dependent protein kinase activity / histone H2AXS139 kinase activity / DNA-dependent protein kinase complex / immature B cell differentiation / DNA-dependent protein kinase-DNA ligase 4 complex / immunoglobulin V(D)J recombination / nonhomologous end joining complex / regulation of smooth muscle cell proliferation / double-strand break repair via alternative nonhomologous end joining / Cytosolic sensors of pathogen-associated DNA / regulation of epithelial cell proliferation / IRF3-mediated induction of type I IFN / telomere capping / U3 snoRNA binding / regulation of hematopoietic stem cell differentiation / maturation of 5.8S rRNA / negative regulation of cGAS/STING signaling pathway / T cell lineage commitment / B cell lineage commitment / positive regulation of double-strand break repair via nonhomologous end joining / ectopic germ cell programmed cell death / somitogenesis / mitotic G1 DNA damage checkpoint signaling / telomere maintenance / activation of innate immune response / negative regulation of protein phosphorylation / positive regulation of erythrocyte differentiation / small-subunit processome / protein-DNA complex / positive regulation of translation / response to gamma radiation / Nonhomologous End-Joining (NHEJ) / brain development / peptidyl-threonine phosphorylation / protein modification process / protein destabilization / regulation of circadian rhythm / double-strand break repair via nonhomologous end joining / cellular response to insulin stimulus / rhythmic process / intrinsic apoptotic signaling pathway in response to DNA damage / double-strand break repair / E3 ubiquitin ligases ubiquitinate target proteins / T cell differentiation in thymus / heart development / double-stranded DNA binding / peptidyl-serine phosphorylation / RNA polymerase II-specific DNA-binding transcription factor binding / transcription regulator complex / chromosome, telomeric region / non-specific serine/threonine protein kinase / protein kinase activity / positive regulation of apoptotic process / protein domain specific binding / protein phosphorylation / protein serine kinase activity / innate immune response / protein serine/threonine kinase activity / DNA damage response / chromatin / nucleolus / negative regulation of apoptotic process / enzyme binding / positive regulation of transcription by RNA polymerase II / protein-containing complex / RNA binding / nucleoplasm / ATP binding / membrane / nucleus / cytosol
Similarity search - Function
DNA-dependent protein kinase catalytic subunit, CC3 / DNA-dependent protein kinase catalytic subunit, catalytic domain / DNA-dependent protein kinase catalytic subunit, CC5 / DNA-dependent protein kinase catalytic subunit, CC1/2 / DNA-PKcs, N-terminal / DNA-dependent protein kinase catalytic subunit, CC3 / DNA-PKcs, CC5 / DNA-PKcs, N-terminal / DNA-dependent protein kinase catalytic subunit, CC1/2 / NUC194 ...DNA-dependent protein kinase catalytic subunit, CC3 / DNA-dependent protein kinase catalytic subunit, catalytic domain / DNA-dependent protein kinase catalytic subunit, CC5 / DNA-dependent protein kinase catalytic subunit, CC1/2 / DNA-PKcs, N-terminal / DNA-dependent protein kinase catalytic subunit, CC3 / DNA-PKcs, CC5 / DNA-PKcs, N-terminal / DNA-dependent protein kinase catalytic subunit, CC1/2 / NUC194 / PIK-related kinase, FAT / FAT domain / FATC domain / FATC / FATC domain / PIK-related kinase / FAT domain profile. / FATC domain profile. / Phosphatidylinositol 3- and 4-kinases signature 1. / Phosphatidylinositol 3/4-kinase, conserved site / Phosphatidylinositol 3- and 4-kinases signature 2. / Phosphatidylinositol 3-/4-kinase, catalytic domain superfamily / Phosphoinositide 3-kinase, catalytic domain / Phosphatidylinositol 3- and 4-kinase / Phosphatidylinositol 3- and 4-kinases catalytic domain profile. / Phosphatidylinositol 3-/4-kinase, catalytic domain / Armadillo-like helical / Armadillo-type fold / Protein kinase-like domain superfamily
Similarity search - Domain/homology
Chem-KWT / DNA-dependent protein kinase catalytic subunit
Similarity search - Component
Biological speciesHomo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.24 Å
AuthorsLiang, S. / Thomas, S.E. / Blundell, T.L.
Funding support United Kingdom, 1items
OrganizationGrant numberCountry
Wellcome Trust United Kingdom
CitationJournal: Nature / Year: 2022
Title: Structural insights into inhibitor regulation of the DNA repair protein DNA-PKcs.
Authors: Shikang Liang / Sherine E Thomas / Amanda K Chaplin / Steven W Hardwick / Dimitri Y Chirgadze / Tom L Blundell /
Abstract: The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has a central role in non-homologous end joining, one of the two main pathways that detect and repair DNA double-strand breaks (DSBs) in ...The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has a central role in non-homologous end joining, one of the two main pathways that detect and repair DNA double-strand breaks (DSBs) in humans. DNA-PKcs is of great importance in repairing pathological DSBs, making DNA-PKcs inhibitors attractive therapeutic agents for cancer in combination with DSB-inducing radiotherapy and chemotherapy. Many of the selective inhibitors of DNA-PKcs that have been developed exhibit potential as treatment for various cancers. Here we report cryo-electron microscopy (cryo-EM) structures of human DNA-PKcs natively purified from HeLa cell nuclear extracts, in complex with adenosine-5'-(γ-thio)-triphosphate (ATPγS) and four inhibitors (wortmannin, NU7441, AZD7648 and M3814), including drug candidates undergoing clinical trials. The structures reveal molecular details of ATP binding at the active site before catalysis and provide insights into the modes of action and specificities of the competitive inhibitors. Of note, binding of the ligands causes movement of the PIKK regulatory domain (PRD), revealing a connection between the p-loop and PRD conformations. Electrophoretic mobility shift assay and cryo-EM studies on the DNA-dependent protein kinase holoenzyme further show that ligand binding does not have a negative allosteric or inhibitory effect on assembly of the holoenzyme complex and that inhibitors function through direct competition with ATP. Overall, the structures described in this study should greatly assist future efforts in rational drug design targeting DNA-PKcs, demonstrating the potential of cryo-EM in structure-guided drug development for large and challenging targets.
History
DepositionJun 10, 2021Deposition site: PDBE / Processing site: PDBE
Revision 1.0Jan 12, 2022Provider: repository / Type: Initial release
Revision 1.1Jan 19, 2022Group: Database references / Category: citation / Item: _citation.pdbx_database_id_PubMed / _citation.title
Revision 1.2Feb 2, 2022Group: Structure summary / Category: audit_author / Item: _audit_author.name
Revision 1.3Feb 9, 2022Group: Database references / Category: citation
Item: _citation.journal_volume / _citation.page_first / _citation.page_last

-
Structure visualization

Movie
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-13067
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: DNA-dependent protein kinase catalytic subunit,DNA-dependent protein kinase catalytic subunit,DNA-PKcs
hetero molecules


Theoretical massNumber of molelcules
Total (without water)471,8042
Polymers471,3751
Non-polymers4281
Water0
1


  • Idetical with deposited unit
  • defined by author&software
  • Evidence: microscopy
TypeNameSymmetry operationNumber
identity operation1_5551
Buried area850 Å2
ΔGint0 kcal/mol
Surface area156560 Å2
MethodPISA

-
Components

#1: Protein DNA-dependent protein kinase catalytic subunit,DNA-dependent protein kinase catalytic subunit,DNA-PKcs / DNA-PK catalytic subunit / DNA-PKcs / DNPK1 / p460


Mass: 471375.406 Da / Num. of mol.: 1 / Source method: isolated from a natural source / Source: (natural) Homo sapiens (human)
References: UniProt: P78527, non-specific serine/threonine protein kinase
#2: Chemical ChemComp-KWT / (1S,6BR,9AS,11R,11BR)-9A,11B-DIMETHYL-1-[(METHYLOXY)METHYL]-3,6,9-TRIOXO-1,6,6B,7,8,9,9A,10,11,11B-DECAHYDRO-3H-FURO[4, 3,2-DE]INDENO[4,5-H][2]BENZOPYRAN-11-YL ACETATE / [1S-(1A,6BA,9AB,11A,11BB)]-11-(ACETYLOXY)-1,6B,7,8,9A,10,11,11B-OCTAHYDRO-1-(METHOXYMETHLY) -9A,11B-DIMETHYL-3H-FURO[4,3,2-DE]INDENL[4,5-H]-2-BENZOPYRAN-3,6,9,TRIONE / WORTMANNIN / Wortmannin


Mass: 428.432 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: C23H24O8 / Feature type: SUBJECT OF INVESTIGATION / Comment: inhibitor*YM
Has ligand of interestY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: DNA-PKcs in complex with wortmannin / Type: COMPLEX / Entity ID: #1 / Source: NATURAL
Source (natural)Organism: Homo sapiens (human)
Buffer solutionpH: 7.6
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELDBright-field microscopy
Image recordingElectron dose: 47.9 e/Å2 / Film or detector model: GATAN K3 (6k x 4k)

-
Processing

CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 3.24 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 64179 / Symmetry type: POINT

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more