[English] 日本語
Yorodumi
- PDB-7ni6: Human ATM kinase with bound ATPyS -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7ni6
TitleHuman ATM kinase with bound ATPyS
ComponentsSerine-protein kinase ATM
KeywordsSIGNALING PROTEIN / Kinase / inhibitor / DNA damage response / cancer research
Function / homology
Function and homology information


positive regulation of DNA catabolic process / establishment of RNA localization to telomere / positive regulation of telomerase catalytic core complex assembly / cellular response to nitrosative stress / negative regulation of telomere capping / positive regulation of DNA damage response, signal transduction by p53 class mediator / establishment of protein-containing complex localization to telomere / regulation of microglial cell activation / Sensing of DNA Double Strand Breaks / positive regulation of telomere maintenance via telomere lengthening ...positive regulation of DNA catabolic process / establishment of RNA localization to telomere / positive regulation of telomerase catalytic core complex assembly / cellular response to nitrosative stress / negative regulation of telomere capping / positive regulation of DNA damage response, signal transduction by p53 class mediator / establishment of protein-containing complex localization to telomere / regulation of microglial cell activation / Sensing of DNA Double Strand Breaks / positive regulation of telomere maintenance via telomere lengthening / meiotic telomere clustering / lipoprotein catabolic process / pre-B cell allelic exclusion / DNA-dependent protein kinase activity / histone H2AXS139 kinase activity / male meiotic nuclear division / histone mRNA catabolic process / female meiotic nuclear division / regulation of telomere maintenance via telomerase / pexophagy / cellular response to X-ray / peptidyl-serine autophosphorylation / V(D)J recombination / oocyte development / Impaired BRCA2 binding to PALB2 / reciprocal meiotic recombination / DNA repair complex / Defective homologous recombination repair (HRR) due to BRCA1 loss of function / Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of BRCA1 binding function / Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of BRCA2/RAD51/RAD51C binding function / Homologous DNA Pairing and Strand Exchange / Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SDSA) / Resolution of D-loop Structures through Holliday Junction Intermediates / HDR through Single Strand Annealing (SSA) / Impaired BRCA2 binding to RAD51 / 1-phosphatidylinositol-3-kinase activity / response to ionizing radiation / mitotic spindle assembly checkpoint signaling / TP53 Regulates Transcription of Caspase Activators and Caspases / negative regulation of B cell proliferation / mitotic G2 DNA damage checkpoint signaling / Presynaptic phase of homologous DNA pairing and strand exchange / TP53 Regulates Transcription of Genes Involved in Cytochrome C Release / peroxisomal matrix / positive regulation of cell adhesion / replicative senescence / Regulation of HSF1-mediated heat shock response / somitogenesis / regulation of cellular response to heat / DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest / signal transduction in response to DNA damage / cellular response to retinoic acid / ovarian follicle development / negative regulation of TORC1 signaling / positive regulation of telomere maintenance via telomerase / Pexophagy / telomere maintenance / post-embryonic development / thymus development / DNA damage checkpoint signaling / regulation of signal transduction by p53 class mediator / regulation of autophagy / determination of adult lifespan / TP53 Regulates Transcription of DNA Repair Genes / Nonhomologous End-Joining (NHEJ) / Stabilization of p53 / double-strand break repair via homologous recombination / Autodegradation of the E3 ubiquitin ligase COP1 / brain development / multicellular organism growth / cellular response to gamma radiation / HDR through Homologous Recombination (HRR) / G2/M DNA damage checkpoint / Regulation of TP53 Activity through Methylation / DNA Damage/Telomere Stress Induced Senescence / spindle / Meiotic recombination / cellular response to reactive oxygen species / double-strand break repair via nonhomologous end joining / positive regulation of neuron apoptotic process / intrinsic apoptotic signaling pathway in response to DNA damage / double-strand break repair / cellular senescence / Regulation of TP53 Degradation / Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at DNA double strand breaks / heart development / Processing of DNA double-strand break ends / cytoplasmic vesicle / peptidyl-serine phosphorylation / neuron apoptotic process / regulation of apoptotic process / Regulation of TP53 Activity through Phosphorylation / protein autophosphorylation / response to hypoxia / regulation of cell cycle / non-specific serine/threonine protein kinase / positive regulation of cell migration / positive regulation of apoptotic process / protein phosphorylation / protein serine kinase activity
Similarity search - Function
Telomere-length maintenance and DNA damage repair / Serine/threonine-protein kinase ATM, plant / ATM, catalytic domain / Telomere-length maintenance and DNA damage repair / Telomere-length maintenance and DNA damage repair / PIK-related kinase, FAT / FAT domain / FATC domain / FATC / FATC domain ...Telomere-length maintenance and DNA damage repair / Serine/threonine-protein kinase ATM, plant / ATM, catalytic domain / Telomere-length maintenance and DNA damage repair / Telomere-length maintenance and DNA damage repair / PIK-related kinase, FAT / FAT domain / FATC domain / FATC / FATC domain / PIK-related kinase / FAT domain profile. / FATC domain profile. / Phosphatidylinositol 3- and 4-kinases signature 1. / Phosphatidylinositol 3/4-kinase, conserved site / Phosphatidylinositol 3- and 4-kinases signature 2. / Phosphatidylinositol 3-/4-kinase, catalytic domain superfamily / Phosphoinositide 3-kinase, catalytic domain / Phosphatidylinositol 3- and 4-kinase / Phosphatidylinositol 3- and 4-kinases catalytic domain profile. / Phosphatidylinositol 3-/4-kinase, catalytic domain / Armadillo-type fold / Protein kinase-like domain superfamily
Similarity search - Domain/homology
PHOSPHOTHIOPHOSPHORIC ACID-ADENYLATE ESTER / Serine-protein kinase ATM
Similarity search - Component
Biological speciesHomo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.8 Å
AuthorsStakyte, K. / Rotheneder, M. / Lammens, K. / Bartho, J.D.
Funding support Germany, 4items
OrganizationGrant numberCountry
German Research Foundation (DFG)CRC1054 Germany
German Research Foundation (DFG)CRC1064 Germany
German Research Foundation (DFG)CRC1361 Germany
Leibniz Association Germany
CitationJournal: Nat Struct Mol Biol / Year: 2021
Title: Molecular basis of human ATM kinase inhibition.
Authors: K Stakyte / M Rotheneder / K Lammens / J D Bartho / U Grädler / T Fuchß / U Pehl / A Alt / E van de Logt / K P Hopfner /
Abstract: Human checkpoint kinase ataxia telangiectasia-mutated (ATM) plays a key role in initiation of the DNA damage response following DNA double-strand breaks. ATM inhibition is a promising approach in ...Human checkpoint kinase ataxia telangiectasia-mutated (ATM) plays a key role in initiation of the DNA damage response following DNA double-strand breaks. ATM inhibition is a promising approach in cancer therapy, but, so far, detailed insights into the binding modes of known ATM inhibitors have been hampered due to the lack of high-resolution ATM structures. Using cryo-EM, we have determined the structure of human ATM to an overall resolution sufficient to build a near-complete atomic model and identify two hitherto unknown zinc-binding motifs. We determined the structure of the kinase domain bound to ATPγS and to the ATM inhibitors KU-55933 and M4076 at 2.8 Å, 2.8 Å and 3.0 Å resolution, respectively. The mode of action and selectivity of the ATM inhibitors can be explained by structural comparison and provide a framework for structure-based drug design.
History
DepositionFeb 11, 2021Deposition site: PDBE / Processing site: PDBE
Revision 1.0Sep 1, 2021Provider: repository / Type: Initial release
Revision 1.1Oct 13, 2021Group: Data collection / Database references
Category: citation / citation_author ...citation / citation_author / em_admin / pdbx_database_proc
Item: _citation.country / _citation.journal_abbrev ..._citation.country / _citation.journal_abbrev / _citation.journal_id_CSD / _citation.journal_id_ISSN / _citation.pdbx_database_id_DOI / _citation.pdbx_database_id_PubMed / _citation.title / _citation.year / _citation_author.identifier_ORCID / _citation_author.name / _em_admin.last_update
Revision 1.2Oct 20, 2021Group: Data collection / Database references
Category: citation / citation_author ...citation / citation_author / database_PDB_rev / database_PDB_rev_record / em_admin / pdbx_database_proc
Item: _citation.journal_volume / _citation.page_first ..._citation.journal_volume / _citation.page_first / _citation.page_last / _citation_author.identifier_ORCID / _em_admin.last_update

-
Structure visualization

Movie
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-12352
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Serine-protein kinase ATM
B: Serine-protein kinase ATM
hetero molecules


Theoretical massNumber of molelcules
Total (without water)710,2788
Polymers709,0522
Non-polymers1,2266
Water0
1


  • Idetical with deposited unit
  • defined by author&software
  • Evidence: microscopy
TypeNameSymmetry operationNumber
identity operation1_5551
Buried area9690 Å2
ΔGint-157 kcal/mol
Surface area123920 Å2
MethodPISA

-
Components

#1: Protein Serine-protein kinase ATM / Ataxia telangiectasia mutated / A-T mutated


Mass: 354526.188 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: ATM / Production host: Homo sapiens (human)
References: UniProt: Q13315, non-specific serine/threonine protein kinase
#2: Chemical ChemComp-ZN / ZINC ION


Mass: 65.409 Da / Num. of mol.: 2 / Source method: obtained synthetically / Formula: Zn
#3: Chemical ChemComp-AGS / PHOSPHOTHIOPHOSPHORIC ACID-ADENYLATE ESTER / ATP-GAMMA-S / ADENOSINE 5'-(3-THIOTRIPHOSPHATE) / ADENOSINE 5'-(GAMMA-THIOTRIPHOSPHATE) / ADENOSINE-5'-DIPHOSPHATE MONOTHIOPHOSPHATE


Mass: 523.247 Da / Num. of mol.: 2 / Source method: obtained synthetically / Formula: C10H16N5O12P3S / Feature type: SUBJECT OF INVESTIGATION / Comment: ATP-gamma-S, energy-carrying molecule analogue*YM
#4: Chemical ChemComp-MG / MAGNESIUM ION


Mass: 24.305 Da / Num. of mol.: 2 / Source method: obtained synthetically / Formula: Mg
Has ligand of interestY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: ATM dimer with bound KU-55933 / Type: COMPLEX / Entity ID: #1 / Source: RECOMBINANT
Source (natural)Organism: Homo sapiens (human)
Source (recombinant)Organism: Homo sapiens (human)
Buffer solutionpH: 7.5
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELDBright-field microscopy
Image recordingElectron dose: 42 e/Å2 / Detector mode: COUNTING / Film or detector model: GATAN K2 SUMMIT (4k x 4k)

-
Processing

SoftwareName: PHENIX / Version: 1.19.1_4122: / Classification: refinement
EM softwareName: EPU / Category: image acquisition
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 2.8 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 690548 / Symmetry type: POINT
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.00223501
ELECTRON MICROSCOPYf_angle_d0.36531725
ELECTRON MICROSCOPYf_dihedral_angle_d5.1773093
ELECTRON MICROSCOPYf_chiral_restr0.0353585
ELECTRON MICROSCOPYf_plane_restr0.0034017

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more