[English] 日本語
Yorodumi
- PDB-7lxx: SARS-CoV-2 S/S2M11/S2L28 Local Refinement -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7lxx
TitleSARS-CoV-2 S/S2M11/S2L28 Local Refinement
Components
  • S2L28 Fab Heavy Chain variable region
  • S2L28 Fab Light Chain variable region
  • Spike glycoproteinPeplomer
KeywordsVIRAL PROTEIN/IMMUNE SYSTEM / Antibody / VIRAL PROTEIN / Structural Genomics / Seattle Structural Genomics Center for Infectious Disease / SSGCID / VIRAL PROTEIN-IMMUNE SYSTEM complex
Function / homology
Function and homology information


Translation of structural proteins / Virion Assembly and Release / Maturation of spike protein / suppression by virus of host tetherin activity / Attachment and Entry / host cell endoplasmic reticulum-Golgi intermediate compartment membrane / receptor-mediated virion attachment to host cell / endoplasmic reticulum-Golgi intermediate compartment / viral translation / host cell surface receptor binding ...Translation of structural proteins / Virion Assembly and Release / Maturation of spike protein / suppression by virus of host tetherin activity / Attachment and Entry / host cell endoplasmic reticulum-Golgi intermediate compartment membrane / receptor-mediated virion attachment to host cell / endoplasmic reticulum-Golgi intermediate compartment / viral translation / host cell surface receptor binding / endocytosis involved in viral entry into host cell / endocytic vesicle membrane / fusion of virus membrane with host plasma membrane / viral protein processing / suppression by virus of host type I interferon-mediated signaling pathway / fusion of virus membrane with host endosome membrane / viral envelope / viral entry into host cell / : / endoplasmic reticulum lumen / host cell plasma membrane / virion membrane / integral component of membrane / identical protein binding
Similarity search - Function
Spike (S) protein S1 subunit, receptor-binding domain, SARS-CoV-2 / Spike (S) protein S1 subunit, N-terminal domain, SARS-CoV-like / Betacoronavirus spike (S) glycoprotein S1 subunit C-terminal (CTD) domain profile. / Betacoronavirus spike (S) glycoprotein S1 subunit N-terminal (NTD) domain profile. / Coronavirus spike (S) glycoprotein S2 subunit heptad repeat 1 (HR1) region profile. / Spike glycoprotein, betacoronavirus / Spike (S) protein S1 subunit, receptor-binding domain, betacoronavirus / Betacoronavirus spike glycoprotein S1, receptor binding / Spike receptor binding domain superfamily, coronavirus / : ...Spike (S) protein S1 subunit, receptor-binding domain, SARS-CoV-2 / Spike (S) protein S1 subunit, N-terminal domain, SARS-CoV-like / Betacoronavirus spike (S) glycoprotein S1 subunit C-terminal (CTD) domain profile. / Betacoronavirus spike (S) glycoprotein S1 subunit N-terminal (NTD) domain profile. / Coronavirus spike (S) glycoprotein S2 subunit heptad repeat 1 (HR1) region profile. / Spike glycoprotein, betacoronavirus / Spike (S) protein S1 subunit, receptor-binding domain, betacoronavirus / Betacoronavirus spike glycoprotein S1, receptor binding / Spike receptor binding domain superfamily, coronavirus / : / Betacoronavirus-like spike glycoprotein S1, N-terminal / Spike glycoprotein S1, N-terminal domain, betacoronavirus-like / Spike glycoprotein S2 superfamily, coronavirus / Coronavirus spike glycoprotein S1, C-terminal / Spike glycoprotein S2, coronavirus / Coronavirus spike glycoprotein S1, C-terminal / Coronavirus spike glycoprotein S2
Similarity search - Domain/homology
Biological speciesHomo sapiens (human)
Severe acute respiratory syndrome coronavirus 2
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3 Å
AuthorsMcCallum, M. / Veesler, D. / Seattle Structural Genomics Center for Infectious Disease (SSGCID)
Funding support United States, 1items
OrganizationGrant numberCountry
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)R01GM120553 United States
CitationJournal: Cell / Year: 2021
Title: N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2.
Authors: Matthew McCallum / Anna De Marco / Florian A Lempp / M Alejandra Tortorici / Dora Pinto / Alexandra C Walls / Martina Beltramello / Alex Chen / Zhuoming Liu / Fabrizia Zatta / Samantha ...Authors: Matthew McCallum / Anna De Marco / Florian A Lempp / M Alejandra Tortorici / Dora Pinto / Alexandra C Walls / Martina Beltramello / Alex Chen / Zhuoming Liu / Fabrizia Zatta / Samantha Zepeda / Julia di Iulio / John E Bowen / Martin Montiel-Ruiz / Jiayi Zhou / Laura E Rosen / Siro Bianchi / Barbara Guarino / Chiara Silacci Fregni / Rana Abdelnabi / Shi-Yan Caroline Foo / Paul W Rothlauf / Louis-Marie Bloyet / Fabio Benigni / Elisabetta Cameroni / Johan Neyts / Agostino Riva / Gyorgy Snell / Amalio Telenti / Sean P J Whelan / Herbert W Virgin / Davide Corti / Matteo Samuele Pizzuto / David Veesler /
Abstract: The SARS-CoV-2 spike (S) glycoprotein contains an immunodominant receptor-binding domain (RBD) targeted by most neutralizing antibodies (Abs) in COVID-19 patient plasma. Little is known about ...The SARS-CoV-2 spike (S) glycoprotein contains an immunodominant receptor-binding domain (RBD) targeted by most neutralizing antibodies (Abs) in COVID-19 patient plasma. Little is known about neutralizing Abs binding to epitopes outside the RBD and their contribution to protection. Here, we describe 41 human monoclonal Abs (mAbs) derived from memory B cells, which recognize the SARS-CoV-2 S N-terminal domain (NTD) and show that a subset of them neutralize SARS-CoV-2 ultrapotently. We define an antigenic map of the SARS-CoV-2 NTD and identify a supersite (designated site i) recognized by all known NTD-specific neutralizing mAbs. These mAbs inhibit cell-to-cell fusion, activate effector functions, and protect Syrian hamsters from SARS-CoV-2 challenge, albeit selecting escape mutants in some animals. Indeed, several SARS-CoV-2 variants, including the B.1.1.7, B.1.351, and P.1 lineages, harbor frequent mutations within the NTD supersite, suggesting ongoing selective pressure and the importance of NTD-specific neutralizing mAbs for protective immunity and vaccine design.
History
DepositionMar 5, 2021Deposition site: RCSB / Processing site: RCSB
Revision 1.0Apr 14, 2021Provider: repository / Type: Initial release
Revision 1.1May 12, 2021Group: Database references / Category: citation / Item: _citation.journal_volume / _citation.page_first

-
Structure visualization

Movie
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-23578
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
H: S2L28 Fab Heavy Chain variable region
L: S2L28 Fab Light Chain variable region
A: Spike glycoprotein
hetero molecules


Theoretical massNumber of molelcules
Total (without water)168,2525
Polymers167,4603
Non-polymers7922
Water0
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: immunoprecipitation
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

#1: Antibody S2L28 Fab Heavy Chain variable region


Mass: 13849.299 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Homo sapiens (human)
#2: Antibody S2L28 Fab Light Chain variable region


Mass: 11183.054 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Homo sapiens (human)
#3: Protein Spike glycoprotein / Peplomer / S glycoprotein / E2 / Peplomer protein


Mass: 142427.438 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Severe acute respiratory syndrome coronavirus 2
Gene: S, 2 / Production host: Homo sapiens (human) / References: UniProt: P0DTC2
#4: Polysaccharide 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta- ...2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-[alpha-L-fucopyranose-(1-6)]2-acetamido-2-deoxy-beta-D-glucopyranose


Type: oligosaccharide / Mass: 570.542 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
DescriptorTypeProgram
DGlcpNAcb1-4[LFucpa1-6]DGlcpNAcb1-ROHGlycam Condensed SequenceGMML 1.0
WURCS=2.0/2,3,2/[a2122h-1b_1-5_2*NCC/3=O][a1221m-1a_1-5]/1-1-2/a4-b1_a6-c1WURCSPDB2Glycan 1.1.0
[][D-1-deoxy-GlcpNAc]{[(4+1)][b-D-GlcpNAc]{}[(6+1)][a-L-Fucp]{}}LINUCSPDB-CARE
#5: Sugar ChemComp-NAG / 2-acetamido-2-deoxy-beta-D-glucopyranose / N-acetyl-beta-D-glucosamine / 2-acetamido-2-deoxy-beta-D-glucose / 2-acetamido-2-deoxy-D-glucose / 2-acetamido-2-deoxy-glucose / N-ACETYL-D-GLUCOSAMINE / N-Acetylglucosamine


Type: D-saccharide, beta linking / Mass: 221.208 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: C8H15NO6 / Feature type: SUBJECT OF INVESTIGATION
IdentifierTypeProgram
DGlcpNAcbCONDENSED IUPAC CARBOHYDRATE SYMBOLGMML 1.0
N-acetyl-b-D-glucopyranosamineCOMMON NAMEGMML 1.0
b-D-GlcpNAcIUPAC CARBOHYDRATE SYMBOLPDB-CARE 1.0
GlcNAcSNFG CARBOHYDRATE SYMBOLGMML 1.0
Has ligand of interestY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: SARS-CoV-2 S hexapro bound to S2L28 Fab / Type: COMPLEX / Entity ID: #1-#3 / Source: RECOMBINANT
Molecular weightExperimental value: NO
Source (natural)
IDEntity assembly-IDOrganismNcbi tax-ID
11Homo sapiens (human)9606
21Severe acute respiratory syndrome coronavirus 22697049
Source (recombinant)Organism: Homo sapiens (human)
Buffer solutionpH: 8
Buffer component
IDConc.NameBuffer-ID
120 mMTris-HClTris1
2150 mMsodium chloride1
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELDBright-field microscopy
Image recordingElectron dose: 60 e/Å2 / Detector mode: COUNTING / Film or detector model: GATAN K2 SUMMIT (4k x 4k)

-
Processing

CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 3 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 81887 / Symmetry type: POINT

+
About Yorodumi

-
News

-
Aug 12, 2020. New: Covid-19 info

New: Covid-19 info

  • New page: Covid-19 featured information page in EM Navigator

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

-
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. New: Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force. (see PDBe EMDB page)
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is "EMD"? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB at PDBe / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary. This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated. See below links for details.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software). Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

+
Jun 16, 2017. Omokage search with filter

Omokage search with filter

  • Result of Omokage search can be filtered by keywords and the database types

Related info.:Omokage search

Read more

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more