[English] 日本語
Yorodumi
- PDB-7kmd: Crystal structure of a HIV-1 clade C isolate Du172.17 HR1.R4.664 ... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 7kmd
TitleCrystal structure of a HIV-1 clade C isolate Du172.17 HR1.R4.664 Env trimer in complex with human Fabs PGT124 and 35O22
Components
  • (Envelope glycoprotein ...) x 2
  • 124 Heavy chain
  • 124 Light chain
  • 35O22 Heavy chain
  • 35O22 Light chain
KeywordsVIRAL PROTEIN/IMMUNE SYSTEM / HIV / envelope / glycoprotein / prefusion trimer / glycan / HIV-1 GP120 / HIV-1 GP41 / neutralizing antibodies / VIRAL PROTEIN-IMMUNE SYSTEM complex
Function / homology
Function and homology information


: / positive regulation of plasma membrane raft polarization / positive regulation of receptor clustering / positive regulation of establishment of T cell polarity / host cell endosome membrane / clathrin-dependent endocytosis of virus by host cell / viral protein processing / fusion of virus membrane with host plasma membrane / virus-mediated perturbation of host defense response / fusion of virus membrane with host endosome membrane ...: / positive regulation of plasma membrane raft polarization / positive regulation of receptor clustering / positive regulation of establishment of T cell polarity / host cell endosome membrane / clathrin-dependent endocytosis of virus by host cell / viral protein processing / fusion of virus membrane with host plasma membrane / virus-mediated perturbation of host defense response / fusion of virus membrane with host endosome membrane / viral envelope / virion attachment to host cell / host cell plasma membrane / structural molecule activity / virion membrane / plasma membrane
Similarity search - Function
Envelope glycoprotein Gp160 / Retroviral envelope protein / Retroviral envelope protein GP41-like / Gp120 core superfamily / Envelope glycoprotein GP120 / Human immunodeficiency virus 1, envelope glycoprotein Gp120
Similarity search - Domain/homology
Envelope glycoprotein gp160
Similarity search - Component
Biological speciesHomo sapiens (human)
Human immunodeficiency virus 1
MethodX-RAY DIFFRACTION / SYNCHROTRON / MOLECULAR REPLACEMENT / Resolution: 3.39228580771 Å
AuthorsKumar, S. / Wilson, I.A.
Funding support United States, 1items
OrganizationGrant numberCountry
National Institutes of Health/National Institute Of Allergy and Infectious Diseases (NIH/NIAID) United States
CitationJournal: mBio / Year: 2021
Title: Neutralizing Antibodies Induced by First-Generation gp41-Stabilized HIV-1 Envelope Trimers and Nanoparticles.
Authors: Sonu Kumar / Xiaohe Lin / Timothy Ngo / Benjamin Shapero / Cindy Sou / Joel D Allen / Jeffrey Copps / Lei Zhang / Gabriel Ozorowski / Linling He / Max Crispin / Andrew B Ward / Ian A Wilson / Jiang Zhu /
Abstract: The immunogenicity of gp41-stabilized HIV-1 BG505 envelope (Env) trimers and nanoparticles (NPs) was recently assessed in mice and rabbits. Here, we combined Env-specific B-cell sorting and ...The immunogenicity of gp41-stabilized HIV-1 BG505 envelope (Env) trimers and nanoparticles (NPs) was recently assessed in mice and rabbits. Here, we combined Env-specific B-cell sorting and repertoire sequencing to identify neutralizing antibodies (NAbs) from immunized animals. A panel of mouse NAbs was isolated from mice immunized with a 60-meric I3-01 NP presenting 20 stabilized trimers. Three mouse NAbs potently neutralized BG505.T332N by recognizing a glycan epitope centered in the C3/V4 region on BG505 Env, as revealed by electron microscopy (EM), X-ray crystallography, and epitope mapping. A set of rabbit NAbs was isolated from rabbits immunized with a soluble trimer and a 24-meric ferritin NP presenting 8 trimers. Neutralization assays against BG505.T332N variants confirmed that potent rabbit NAbs targeted previously described glycan holes on BG505 Env and accounted for a significant portion of the autologous NAb response in both the trimer and ferritin NP groups. Last, we examined NAb responses that were induced by non-BG505 Env immunogens. We determined a 3.4-Å-resolution crystal structure for the clade C transmitted/founder (T/F) Du172.17 Env with a redesigned heptad repeat 1 (HR1) bend in gp41. This clade C Env, in a soluble trimer form and in a multivalent form with 8 trimers attached to ferritin NP, and the gp41-stabilized clade A Q482-d12 Env trimer elicited distinct NAb responses in rabbits, with notable differences in neutralization breadth. Although eliciting a broad NAb response remains a major challenge, our study provides valuable information on an HIV-1 vaccine design strategy that combines gp41 stabilization and NP display. Self-assembling protein nanoparticles (NPs) presenting BG505 envelope (Env) trimers can elicit tier 2 HIV-1-neutralizing antibody (NAb) responses more effectively than soluble trimers. In the present study, monoclonal NAbs were isolated from previously immunized mice and rabbits for structural and functional analyses, which revealed that potent mouse NAbs recognize the C3/V4 region and small NP-elicited rabbit NAbs primarily target known glycan holes on BG505 Env. This study validates the gp41 stabilization strategy for HIV-1 Env vaccine design and highlights the challenge in eliciting a broad NAb response.
History
DepositionNov 2, 2020Deposition site: RCSB / Processing site: RCSB
Revision 1.0Jul 7, 2021Provider: repository / Type: Initial release
Revision 1.1Jul 28, 2021Group: Database references / Category: citation / Item: _citation.journal_volume
Revision 1.2Oct 18, 2023Group: Advisory / Data collection ...Advisory / Data collection / Database references / Refinement description
Category: chem_comp_atom / chem_comp_bond ...chem_comp_atom / chem_comp_bond / database_2 / pdbx_initial_refinement_model / pdbx_unobs_or_zero_occ_atoms
Item: _database_2.pdbx_DOI / _database_2.pdbx_database_accession

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: 35O22 Heavy chain
E: 35O22 Light chain
G: Envelope glycoprotein gp120
T: Envelope glycoprotein gp41
L: 124 Light chain
H: 124 Heavy chain
hetero molecules


Theoretical massNumber of molelcules
Total (without water)178,55326
Polymers167,7586
Non-polymers10,79520
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: gel filtration
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1
Unit cell
Length a, b, c (Å)127.016, 127.016, 316.538
Angle α, β, γ (deg.)90.000, 90.000, 120.000
Int Tables number173
Space group name H-MP63
Space group name HallP6c
Symmetry operation#1: x,y,z
#2: x-y,x,z+1/2
#3: y,-x+y,z+1/2
#4: -y,x-y,z
#5: -x+y,-x,z
#6: -x,-y,z+1/2

-
Components

-
Protein , 2 types, 2 molecules AH

#1: Protein 35O22 Heavy chain


Mass: 26171.520 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Homo sapiens (human)
#6: Protein 124 Heavy chain


Mass: 25460.508 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Homo sapiens (human)

-
Envelope glycoprotein ... , 2 types, 2 molecules GT

#3: Protein Envelope glycoprotein gp120


Mass: 54118.543 Da / Num. of mol.: 1 / Fragment: UNP residues 31-505
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Human immunodeficiency virus 1 / Gene: env / Production host: Homo sapiens (human) / References: UniProt: Q202J8
#4: Protein Envelope glycoprotein gp41


Mass: 15631.747 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Human immunodeficiency virus 1 / Gene: env / Production host: Homo sapiens (human)

-
Antibody , 2 types, 2 molecules EL

#2: Antibody 35O22 Light chain


Mass: 23318.824 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Homo sapiens (human)
#5: Antibody 124 Light chain


Mass: 23056.605 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Homo sapiens (human)

-
Sugars , 7 types, 20 molecules

#7: Polysaccharide alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]alpha-D- ...alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose


Type: oligosaccharide / Mass: 1559.386 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
DescriptorTypeProgram
DManpa1-2DManpa1-6[DManpa1-3]DManpa1-6[DManpa1-2DManpa1-3]DManpb1-4DGlcpNAcb1-4DGlcpNAcb1-ROHGlycam Condensed SequenceGMML 1.0
WURCS=2.0/3,9,8/[a2122h-1b_1-5_2*NCC/3=O][a1122h-1b_1-5][a1122h-1a_1-5]/1-1-2-3-3-3-3-3-3/a4-b1_b4-c1_c3-d1_c6-f1_d2-e1_f3-g1_f6-h1_h2-i1WURCSPDB2Glycan 1.1.0
[][D-1-deoxy-GlcpNAc]{[(4+1)][b-D-GlcpNAc]{[(4+1)][b-D-Manp]{[(3+1)][a-D-Manp]{[(2+1)][a-D-Manp]{}}[(6+1)][a-D-Manp]{[(3+1)][a-D-Manp]{}[(6+1)][a-D-Manp]{[(2+1)][a-D-Manp]{}}}}}}LINUCSPDB-CARE
#8: Polysaccharide 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose


Type: oligosaccharide / Mass: 424.401 Da / Num. of mol.: 3
Source method: isolated from a genetically manipulated source
DescriptorTypeProgram
DGlcpNAcb1-4DGlcpNAcb1-ROHGlycam Condensed SequenceGMML 1.0
WURCS=2.0/1,2,1/[a2122h-1b_1-5_2*NCC/3=O]/1-1/a4-b1WURCSPDB2Glycan 1.1.0
[][D-1-deoxy-GlcpNAc]{[(4+1)][b-D-GlcpNAc]{}}LINUCSPDB-CARE
#9: Polysaccharide
beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta- ...beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose


Type: oligosaccharide / Mass: 586.542 Da / Num. of mol.: 4
Source method: isolated from a genetically manipulated source
DescriptorTypeProgram
DManpb1-4DGlcpNAcb1-4DGlcpNAcb1-ROHGlycam Condensed SequenceGMML 1.0
WURCS=2.0/2,3,2/[a2122h-1b_1-5_2*NCC/3=O][a1122h-1b_1-5]/1-1-2/a4-b1_b4-c1WURCSPDB2Glycan 1.1.0
[][D-1-deoxy-GlcpNAc]{[(4+1)][b-D-GlcpNAc]{[(4+1)][b-D-Manp]{}}}LINUCSPDB-CARE
#10: Polysaccharide alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D- ...alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose


Type: oligosaccharide / Mass: 1559.386 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
DescriptorTypeProgram
DManpa1-2DManpa1-2DManpa1-3[DManpa1-3[DManpa1-6]DManpa1-6]DManpb1-4DGlcpNAcb1-4DGlcpNAcb1-ROHGlycam Condensed SequenceGMML 1.0
WURCS=2.0/3,9,8/[a2122h-1b_1-5_2*NCC/3=O][a1122h-1b_1-5][a1122h-1a_1-5]/1-1-2-3-3-3-3-3-3/a4-b1_b4-c1_c3-d1_c6-g1_d2-e1_e2-f1_g3-h1_g6-i1WURCSPDB2Glycan 1.1.0
[][D-1-deoxy-GlcpNAc]{[(4+1)][b-D-GlcpNAc]{[(4+1)][b-D-Manp]{[(3+1)][a-D-Manp]{[(2+1)][a-D-Manp]{[(2+1)][a-D-Manp]{}}}[(6+1)][a-D-Manp]{[(3+1)][a-D-Manp]{}[(6+1)][a-D-Manp]{}}}}}LINUCSPDB-CARE
#11: Polysaccharide alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2- ...alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose


Type: oligosaccharide / Mass: 910.823 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
DescriptorTypeProgram
DManpa1-3[DManpa1-6]DManpb1-4DGlcpNAcb1-4DGlcpNAcb1-ROHGlycam Condensed SequenceGMML 1.0
WURCS=2.0/3,5,4/[a2122h-1b_1-5_2*NCC/3=O][a1122h-1b_1-5][a1122h-1a_1-5]/1-1-2-3-3/a4-b1_b4-c1_c3-d1_c6-e1WURCSPDB2Glycan 1.1.0
[][D-1-deoxy-GlcpNAc]{[(4+1)][b-D-GlcpNAc]{[(4+1)][b-D-Manp]{[(3+1)][a-D-Manp]{}[(6+1)][a-D-Manp]{}}}}LINUCSPDB-CARE
#12: Polysaccharide alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1- ...alpha-D-mannopyranose-(1-3)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(6-8)-[2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)]2-acetamido-2-deoxy-beta-D-glucopyranose


Type: oligosaccharide / Mass: 1155.068 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
DescriptorTypeProgram
DManpa1-3DManpb1-4DGlcpNAcb1-4DGlcpNAcb6-8[DGlcpNAcb1-4]DGlcpNAcb1-ROHGlycam Condensed SequenceGMML 1.0
WURCS=2.0/4,6,5/[a2122h-1b_1-5_2*NCC/3=O][a1122h-1b_1-5][a1122h-1a_1-5][a2122h-1b_1-5]/1-1-2-3-4-1/a4-b1_a6n1-e2n2*1OCCN*2/4=O_b4-c1_c3-d1_e4-f1WURCSPDB2Glycan 1.1.0
[][D-1-deoxy-GlcpN]{[(2+1)][<C30N2O21>]{}[(4+1)][b-D-GlcpNAc]{}}LINUCSPDB-CARE
#13: Sugar
ChemComp-NAG / 2-acetamido-2-deoxy-beta-D-glucopyranose / N-acetyl-beta-D-glucosamine / 2-acetamido-2-deoxy-beta-D-glucose / 2-acetamido-2-deoxy-D-glucose / 2-acetamido-2-deoxy-glucose / N-ACETYL-D-GLUCOSAMINE


Type: D-saccharide, beta linking / Mass: 221.208 Da / Num. of mol.: 9
Source method: isolated from a genetically manipulated source
Formula: C8H15NO6
IdentifierTypeProgram
DGlcpNAcbCONDENSED IUPAC CARBOHYDRATE SYMBOLGMML 1.0
N-acetyl-b-D-glucopyranosamineCOMMON NAMEGMML 1.0
b-D-GlcpNAcIUPAC CARBOHYDRATE SYMBOLPDB-CARE 1.0
GlcNAcSNFG CARBOHYDRATE SYMBOLGMML 1.0

-
Details

Has ligand of interestY

-
Experimental details

-
Experiment

ExperimentMethod: X-RAY DIFFRACTION / Number of used crystals: 1

-
Sample preparation

CrystalDensity Matthews: 4.39 Å3/Da / Density % sol: 72.01 %
Crystal growTemperature: 293.15 K / Method: vapor diffusion, sitting drop / Details: 0.1M Tris pH=8.4, 25%(v/v) PEG400

-
Data collection

DiffractionMean temperature: 100 K / Serial crystal experiment: N
Diffraction sourceSource: SYNCHROTRON / Site: APS / Beamline: 23-ID-D / Wavelength: 1.033 Å
DetectorType: DECTRIS PILATUS3 6M / Detector: PIXEL / Date: Mar 29, 2019
RadiationMonochromator: double crystal Si(111) / Protocol: SINGLE WAVELENGTH / Monochromatic (M) / Laue (L): M / Scattering type: x-ray
Radiation wavelengthWavelength: 1.033 Å / Relative weight: 1
ReflectionResolution: 3.39→50 Å / Num. obs: 38788 / % possible obs: 97.6 % / Redundancy: 6.4 % / Biso Wilson estimate: 92.5907504709 Å2 / CC1/2: 0.85 / Net I/σ(I): 8.6
Reflection shellResolution: 3.4→3.46 Å / Num. unique obs: 1614 / CC1/2: 0.45

-
Processing

Software
NameVersionClassification
PHENIX1.11.1_2575refinement
PHASERphasing
Cootmodel building
HKL-2000data scaling
HKL-2000data reduction
RefinementMethod to determine structure: MOLECULAR REPLACEMENT
Starting model: PDB entries 5CEZ, 4TOY, 4R26
Resolution: 3.39228580771→49.5301719699 Å / SU ML: 0.574407368599 / Cross valid method: FREE R-VALUE / σ(F): 1.33790597134 / Phase error: 34.8287325509
Stereochemistry target values: GeoStd + Monomer Library + CDL v1.2
RfactorNum. reflection% reflection
Rfree0.29172476334 1917 5.01832460733 %
Rwork0.241970008729 36283 -
obs0.244439177019 38200 95.7753541432 %
Solvent computationShrinkage radii: 0.9 Å / VDW probe radii: 1.11 Å / Solvent model: FLAT BULK SOLVENT MODEL
Displacement parametersBiso mean: 113.176596028 Å2
Refinement stepCycle: LAST / Resolution: 3.39228580771→49.5301719699 Å
ProteinNucleic acidLigandSolventTotal
Num. atoms11318 0 715 0 12033
Refine LS restraints
Refine-IDTypeDev idealNumber
X-RAY DIFFRACTIONf_bond_d0.0040973470520612384
X-RAY DIFFRACTIONf_angle_d1.4830147971916958
X-RAY DIFFRACTIONf_chiral_restr0.1188007547562056
X-RAY DIFFRACTIONf_plane_restr0.00388373089442060
X-RAY DIFFRACTIONf_dihedral_angle_d13.3128128684660
LS refinement shell
Resolution (Å)Rfactor RfreeNum. reflection RfreeRfactor RworkNum. reflection RworkRefine-ID% reflection obs (%)
3.3923-3.47710.4246667805621000.3642543087381878X-RAY DIFFRACTION69.918699187
3.4771-3.57110.3844295356761260.3285617453942256X-RAY DIFFRACTION83.6082836083
3.5711-3.67610.3885427293211310.3170939338362464X-RAY DIFFRACTION91.6961130742
3.6761-3.79470.3627672552891400.305530453592647X-RAY DIFFRACTION97.5498774939
3.7947-3.93030.3604191300261440.2953542794272675X-RAY DIFFRACTION99.3305144468
3.9303-4.08760.3357257567271420.2779236612312710X-RAY DIFFRACTION99.6854246767
4.0876-4.27360.2994790261521440.2456120997222692X-RAY DIFFRACTION99.8240056318
4.2736-4.49870.2918325926631410.2242461474212681X-RAY DIFFRACTION99.8231340644
4.4987-4.78040.2655905521991420.2087134507282693X-RAY DIFFRACTION99.8942917548
4.7804-5.14910.2535079018221420.2072477142332719X-RAY DIFFRACTION100
5.1491-5.66660.2510371634211480.2152606865962692X-RAY DIFFRACTION99.9648011264
5.6666-6.4850.298254281911410.2329429560062705X-RAY DIFFRACTION99.9648753073
6.485-8.16450.2791932858891370.2417899959932735X-RAY DIFFRACTION100
8.1645-49.530.2394557602791390.2087432879142736X-RAY DIFFRACTION99.3778085033

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbjlvh1.pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more