+Open data
-Basic information
Entry | Database: PDB / ID: 7d1z | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | Cryo-EM structure of SET8-nucleosome complex | |||||||||||||||||||||
Components |
| |||||||||||||||||||||
Keywords | NUCLEAR PROTEIN / chromatin / nucleosome | |||||||||||||||||||||
Function / homology | Function and homology information lysine N-methyltransferase activity / [histone H4]-lysine20 N-methyltransferase / histone H4K20 monomethyltransferase activity / histone H4K20 methyltransferase activity / histone H4 methyltransferase activity / polytene chromosome / peptidyl-lysine monomethylation / protein-lysine N-methyltransferase activity / mitotic chromosome condensation / regulation of DNA damage response, signal transduction by p53 class mediator ...lysine N-methyltransferase activity / [histone H4]-lysine20 N-methyltransferase / histone H4K20 monomethyltransferase activity / histone H4K20 methyltransferase activity / histone H4 methyltransferase activity / polytene chromosome / peptidyl-lysine monomethylation / protein-lysine N-methyltransferase activity / mitotic chromosome condensation / regulation of DNA damage response, signal transduction by p53 class mediator / histone methyltransferase activity / negative regulation of tumor necrosis factor-mediated signaling pathway / negative regulation of megakaryocyte differentiation / negative regulation of double-strand break repair via homologous recombination / protein localization to CENP-A containing chromatin / Chromatin modifying enzymes / Replacement of protamines by nucleosomes in the male pronucleus / CENP-A containing nucleosome / Packaging Of Telomere Ends / Recognition and association of DNA glycosylase with site containing an affected purine / Cleavage of the damaged purine / Deposition of new CENPA-containing nucleosomes at the centromere / nucleosomal DNA binding / Recognition and association of DNA glycosylase with site containing an affected pyrimidine / Cleavage of the damaged pyrimidine / Inhibition of DNA recombination at telomere / telomere organization / Meiotic synapsis / Interleukin-7 signaling / RNA Polymerase I Promoter Opening / epigenetic regulation of gene expression / Assembly of the ORC complex at the origin of replication / SUMOylation of chromatin organization proteins / Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex / DNA methylation / Transferases; Transferring one-carbon groups; Methyltransferases / Condensation of Prophase Chromosomes / SIRT1 negatively regulates rRNA expression / Chromatin modifications during the maternal to zygotic transition (MZT) / HCMV Late Events / ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression / regulation of signal transduction by p53 class mediator / innate immune response in mucosa / PRC2 methylates histones and DNA / Regulation of endogenous retroelements by KRAB-ZFP proteins / Defective pyroptosis / Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) / HDACs deacetylate histones / RNA Polymerase I Promoter Escape / Nonhomologous End-Joining (NHEJ) / lipopolysaccharide binding / Transcriptional regulation by small RNAs / Formation of the beta-catenin:TCF transactivating complex / RUNX1 regulates genes involved in megakaryocyte differentiation and platelet function / NoRC negatively regulates rRNA expression / Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3 / G2/M DNA damage checkpoint / HDMs demethylate histones / B-WICH complex positively regulates rRNA expression / DNA Damage/Telomere Stress Induced Senescence / Regulation of TP53 Activity through Methylation / heterochromatin formation / PKMTs methylate histone lysines / Meiotic recombination / Metalloprotease DUBs / Pre-NOTCH Transcription and Translation / RMTs methylate histone arginines / Activation of anterior HOX genes in hindbrain development during early embryogenesis / HCMV Early Events / Transcriptional regulation of granulopoiesis / structural constituent of chromatin / transcription corepressor activity / UCH proteinases / antimicrobial humoral immune response mediated by antimicrobial peptide / nucleosome / antibacterial humoral response / nucleosome assembly / E3 ubiquitin ligases ubiquitinate target proteins / Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at DNA double strand breaks / chromatin organization / RUNX1 regulates transcription of genes involved in differentiation of HSCs / Factors involved in megakaryocyte development and platelet production / HATs acetylate histones / Processing of DNA double-strand break ends / gene expression / Senescence-Associated Secretory Phenotype (SASP) / Oxidative Stress Induced Senescence / defense response to Gram-negative bacterium / Estrogen-dependent gene expression / killing of cells of another organism / chromosome, telomeric region / Ub-specific processing proteases / defense response to Gram-positive bacterium / cadherin binding / protein heterodimerization activity / Amyloid fiber formation / negative regulation of cell population proliferation / cell division / negative regulation of DNA-templated transcription / chromatin Similarity search - Function | |||||||||||||||||||||
Biological species | Homo sapiens (human) synthetic construct (others) | |||||||||||||||||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.15 Å | |||||||||||||||||||||
Authors | Ho, C.-H. / Takizawa, Y. / Kobayashi, W. / Arimura, Y. / Kurumizaka, H. | |||||||||||||||||||||
Funding support | Japan, 6items
| |||||||||||||||||||||
Citation | Journal: Life Sci Alliance / Year: 2021 Title: Structural basis of nucleosomal histone H4 lysine 20 methylation by SET8 methyltransferase. Authors: Cheng-Han Ho / Yoshimasa Takizawa / Wataru Kobayashi / Yasuhiro Arimura / Hiroshi Kimura / Hitoshi Kurumizaka / Abstract: SET8 is solely responsible for histone H4 lysine-20 (H4K20) monomethylation, which preferentially occurs in nucleosomal H4. However, the underlying mechanism by which SET8 specifically promotes the ...SET8 is solely responsible for histone H4 lysine-20 (H4K20) monomethylation, which preferentially occurs in nucleosomal H4. However, the underlying mechanism by which SET8 specifically promotes the H4K20 monomethylation in the nucleosome has not been elucidated. Here, we report the cryo-EM structures of the human SET8-nucleosome complexes with histone H3 and the centromeric H3 variant, CENP-A. Surprisingly, we found that the overall cryo-EM structures of the SET8-nucleosome complexes are substantially different from the previous crystal structure models. In the complexes with H3 and CENP-A nucleosomes, SET8 specifically binds the nucleosomal acidic patch via an arginine anchor, composed of the Arg188 and Arg192 residues. Mutational analyses revealed that the interaction between the SET8 arginine anchor and the nucleosomal acidic patch plays an essential role in the H4K20 monomethylation activity. These results provide the groundwork for understanding the mechanism by which SET8 specifically accomplishes the H4K20 monomethylation in the nucleosome. | |||||||||||||||||||||
History |
|
-Structure visualization
Movie |
Movie viewer |
---|---|
Structure viewer | Molecule: MolmilJmol/JSmol |
-Downloads & links
-Download
PDBx/mmCIF format | 7d1z.cif.gz | 331.1 KB | Display | PDBx/mmCIF format |
---|---|---|---|---|
PDB format | pdb7d1z.ent.gz | 247.3 KB | Display | PDB format |
PDBx/mmJSON format | 7d1z.json.gz | Tree view | PDBx/mmJSON format | |
Others | Other downloads |
-Validation report
Summary document | 7d1z_validation.pdf.gz | 862 KB | Display | wwPDB validaton report |
---|---|---|---|---|
Full document | 7d1z_full_validation.pdf.gz | 879.1 KB | Display | |
Data in XML | 7d1z_validation.xml.gz | 37.5 KB | Display | |
Data in CIF | 7d1z_validation.cif.gz | 60.4 KB | Display | |
Arichive directory | https://data.pdbj.org/pub/pdb/validation_reports/d1/7d1z ftp://data.pdbj.org/pub/pdb/validation_reports/d1/7d1z | HTTPS FTP |
-Related structure data
Related structure data | 30551MC 7d20C M: map data used to model this data C: citing same article (ref.) |
---|---|
Similar structure data |
-Links
-Assembly
Deposited unit |
|
---|---|
1 |
|
-Components
-Protein , 5 types, 9 molecules AEBFCGDHK
#1: Protein | Mass: 15719.445 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Homo sapiens (human) Gene: H3C1, H3FA, HIST1H3A, H3C2, H3FL, HIST1H3B, H3C3, H3FC HIST1H3C, H3C4, H3FB, HIST1H3D, H3C6, H3FD, HIST1H3E, H3C7, H3FI, HIST1H3F, H3C8, H3FH, HIST1H3G, H3C10, H3FK, HIST1H3H, H3C11, H3FF, ...Gene: H3C1, H3FA, HIST1H3A, H3C2, H3FL, HIST1H3B, H3C3, H3FC HIST1H3C, H3C4, H3FB, HIST1H3D, H3C6, H3FD, HIST1H3E, H3C7, H3FI, HIST1H3F, H3C8, H3FH, HIST1H3G, H3C10, H3FK, HIST1H3H, H3C11, H3FF, HIST1H3I, H3C12, H3FJ, HIST1H3J Production host: Escherichia coli (E. coli) / References: UniProt: P68431 #2: Protein | Mass: 11676.703 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Homo sapiens (human) Gene: H4C1, H4/A, H4FA, HIST1H4A, H4C2, H4/I, H4FI, HIST1H4B, H4C3, H4/G, H4FG, HIST1H4C, H4C4, H4/B, H4FB, HIST1H4D, H4C5, H4/J, H4FJ, HIST1H4E, H4C6, H4/C, H4FC, HIST1H4F, H4C8, H4/H, H4FH, ...Gene: H4C1, H4/A, H4FA, HIST1H4A, H4C2, H4/I, H4FI, HIST1H4B, H4C3, H4/G, H4FG, HIST1H4C, H4C4, H4/B, H4FB, HIST1H4D, H4C5, H4/J, H4FJ, HIST1H4E, H4C6, H4/C, H4FC, HIST1H4F, H4C8, H4/H, H4FH, HIST1H4H, H4C9, H4/M, H4FM, HIST1H4I, H4C11, H4/E, H4FE, HIST1H4J, H4C12, H4/D, H4FD, HIST1H4K, H4C13, H4/K, H4FK, HIST1H4L, H4C14, H4/N, H4F2, H4FN, HIST2H4, HIST2H4A, H4C15, H4/O, H4FO, HIST2H4B, H4-16, HIST4H4 Production host: Escherichia coli (E. coli) / References: UniProt: P62805 #3: Protein | Mass: 14447.825 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Homo sapiens (human) / Gene: H2AC4, H2AFM, HIST1H2AB, H2AC8, H2AFA, HIST1H2AE / Production host: Escherichia coli (E. coli) / References: UniProt: P04908 #4: Protein | Mass: 14217.516 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Homo sapiens (human) / Gene: H2BC11, H2BFR, HIST1H2BJ / Production host: Escherichia coli (E. coli) / References: UniProt: P06899 #7: Protein | | Mass: 39295.793 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Homo sapiens (human) / Gene: KMT5A, PRSET7, SET07, SET8, SETD8 / Production host: Escherichia coli (E. coli) References: UniProt: Q9NQR1, Transferases; Transferring one-carbon groups; Methyltransferases, [histone H4]-lysine20 N-methyltransferase |
---|
-DNA chain , 2 types, 2 molecules IJ
#5: DNA chain | Mass: 44520.383 Da / Num. of mol.: 1 / Source method: obtained synthetically / Source: (synth.) synthetic construct (others) |
---|---|
#6: DNA chain | Mass: 44991.660 Da / Num. of mol.: 1 / Source method: obtained synthetically / Source: (synth.) synthetic construct (others) |
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-Sample preparation
Component | Name: SET8-nucleosome complex / Type: COMPLEX / Entity ID: all / Source: RECOMBINANT |
---|---|
Molecular weight | Value: 0.23 MDa / Experimental value: NO |
Source (natural) | Organism: Homo sapiens (human) |
Source (recombinant) | Organism: Escherichia coli (E. coli) |
Buffer solution | pH: 7.5 |
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES |
Vitrification | Cryogen name: ETHANE |
-Electron microscopy imaging
Experimental equipment | Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM |
Electron lens | Mode: BRIGHT FIELD |
Image recording | Electron dose: 52 e/Å2 / Film or detector model: FEI FALCON IV (4k x 4k) |
-Processing
Software | Name: PHENIX / Version: 1.15.2_3472: / Classification: refinement | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EM software |
| ||||||||||||||||||||||||
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION | ||||||||||||||||||||||||
Symmetry | Point symmetry: C1 (asymmetric) | ||||||||||||||||||||||||
3D reconstruction | Resolution: 3.15 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 225437 / Symmetry type: POINT | ||||||||||||||||||||||||
Atomic model building | Protocol: FLEXIBLE FIT / Space: REAL | ||||||||||||||||||||||||
Atomic model building |
| ||||||||||||||||||||||||
Refine LS restraints |
|