+データを開く
-基本情報
登録情報 | データベース: PDB / ID: 6vkl | ||||||
---|---|---|---|---|---|---|---|
タイトル | Negative stain reconstruction of the yeast exocyst octameric complex. | ||||||
要素 | (Exocyst complex component ...) x 8 | ||||||
キーワード | EXOCYTOSIS / EXOCYST / COILED-COIL | ||||||
機能・相同性 | 機能・相同性情報 vesicle tethering involved in exocytosis / exocyst assembly / exocyst localization / negative regulation of SNARE complex assembly / endoplasmic reticulum inheritance / exocyst / prospore membrane / Golgi inheritance / incipient cellular bud site / cellular bud tip ...vesicle tethering involved in exocytosis / exocyst assembly / exocyst localization / negative regulation of SNARE complex assembly / endoplasmic reticulum inheritance / exocyst / prospore membrane / Golgi inheritance / incipient cellular bud site / cellular bud tip / Golgi to plasma membrane transport / cellular bud neck / mating projection tip / vesicle docking involved in exocytosis / spliceosomal complex assembly / exocytosis / Rho protein signal transduction / transport vesicle / phosphatidylinositol-4,5-bisphosphate binding / SNARE binding / cell periphery / intracellular protein transport / small GTPase binding / protein localization / protein transport / plasma membrane / cytoplasm 類似検索 - 分子機能 | ||||||
生物種 | Saccharomyces cerevisiae (パン酵母) | ||||||
手法 | 電子顕微鏡法 / 単粒子再構成法 / ネガティブ染色法 / 解像度: 15 Å | ||||||
データ登録者 | Frost, A. / Munson, M. | ||||||
資金援助 | 米国, 1件
| ||||||
引用 | ジャーナル: J Cell Biol / 年: 2020 タイトル: Exocyst structural changes associated with activation of tethering downstream of Rho/Cdc42 GTPases. 著者: Guendalina Rossi / Dante Lepore / Lillian Kenner / Alexander B Czuchra / Melissa Plooster / Adam Frost / Mary Munson / Patrick Brennwald / 要旨: The exocyst complex plays a critical role in determining both temporal and spatial dynamics of exocytic vesicle tethering and fusion with the plasma membrane. However, the mechanism by which the ...The exocyst complex plays a critical role in determining both temporal and spatial dynamics of exocytic vesicle tethering and fusion with the plasma membrane. However, the mechanism by which the exocyst functions and how it is regulated remain poorly understood. Here we describe a novel biochemical assay for the examination of exocyst function in vesicle tethering. Importantly, the assay is stimulated by gain-of-function mutations in the Exo70 component of the exocyst, selected for their ability to bypass Rho/Cdc42 activation in vivo. Single-particle electron microscopy and 3D reconstructions of negatively stained exocyst complexes reveal a structural change in the mutant exocyst that exposes a binding site for the v-SNARE. We demonstrate a v-SNARE requirement in our tethering assay and increased v-SNARE binding to exocyst gain-of-function complexes. Together, these data suggest an allosteric mechanism for activation involving a conformational change in one subunit of the complex, which is relayed through the complex to regulate its biochemical activity in vitro, as well as overall function in vivo. #1: ジャーナル: Nat Struct Mol Biol / 年: 2018 タイトル: Cryo-EM structure of the exocyst complex. 著者: Kunrong Mei / Yan Li / Shaoxiao Wang / Guangcan Shao / Jia Wang / Yuehe Ding / Guangzuo Luo / Peng Yue / Jun-Jie Liu / Xinquan Wang / Meng-Qiu Dong / Hong-Wei Wang / Wei Guo / 要旨: The exocyst is an evolutionarily conserved octameric protein complex that mediates the tethering of post-Golgi secretory vesicles to the plasma membrane during exocytosis and is implicated in many ...The exocyst is an evolutionarily conserved octameric protein complex that mediates the tethering of post-Golgi secretory vesicles to the plasma membrane during exocytosis and is implicated in many cellular processes such as cell polarization, cytokinesis, ciliogenesis and tumor invasion. Using cryo-EM and chemical cross-linking MS (CXMS), we solved the structure of the Saccharomyces cerevisiae exocyst complex at an average resolution of 4.4 Å. Our model revealed the architecture of the exocyst and led to the identification of the helical bundles that mediate the assembly of the complex at its core. Sequence analysis suggests that these regions are evolutionarily conserved across eukaryotic systems. Additional cell biological data suggest a mechanism for exocyst assembly that leads to vesicle tethering at the plasma membrane. #2: ジャーナル: Nat Struct Mol Biol / 年: 2016 タイトル: Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex. 著者: Margaret R Heider / Mingyu Gu / Caroline M Duffy / Anne M Mirza / Laura L Marcotte / Alexandra C Walls / Nicholas Farrall / Zhanna Hakhverdyan / Mark C Field / Michael P Rout / Adam Frost / Mary Munson / 要旨: The exocyst is a hetero-octameric complex that has been proposed to serve as the tethering complex for exocytosis, although it remains poorly understood at the molecular level. Here, we purified ...The exocyst is a hetero-octameric complex that has been proposed to serve as the tethering complex for exocytosis, although it remains poorly understood at the molecular level. Here, we purified endogenous exocyst complexes from Saccharomyces cerevisiae and showed that they are stable and consist of all eight subunits with equal stoichiometry. Using a combination of biochemical and auxin induced-degradation experiments in yeast, we mapped the subunit connectivity, identified two stable four-subunit modules within the octamer and demonstrated that several known exocyst-binding partners are not necessary for exocyst assembly and stability. Furthermore, we visualized the structure of the yeast complex by using negative-stain electron microscopy; our results indicate that the exocyst exists predominantly as a stable, octameric complex with an elongated architecture that suggests that the subunits are contiguous helical bundles packed together into a bundle of long rods. | ||||||
履歴 |
|
-構造の表示
ムービー |
ムービービューア |
---|---|
構造ビューア | 分子: MolmilJmol/JSmol |
-ダウンロードとリンク
-ダウンロード
PDBx/mmCIF形式 | 6vkl.cif.gz | 919.7 KB | 表示 | PDBx/mmCIF形式 |
---|---|---|---|---|
PDB形式 | pdb6vkl.ent.gz | 638.3 KB | 表示 | PDB形式 |
PDBx/mmJSON形式 | 6vkl.json.gz | ツリー表示 | PDBx/mmJSON形式 | |
その他 | その他のダウンロード |
-検証レポート
文書・要旨 | 6vkl_validation.pdf.gz | 751.4 KB | 表示 | wwPDB検証レポート |
---|---|---|---|---|
文書・詳細版 | 6vkl_full_validation.pdf.gz | 835.2 KB | 表示 | |
XML形式データ | 6vkl_validation.xml.gz | 130.3 KB | 表示 | |
CIF形式データ | 6vkl_validation.cif.gz | 217 KB | 表示 | |
アーカイブディレクトリ | https://data.pdbj.org/pub/pdb/validation_reports/vk/6vkl ftp://data.pdbj.org/pub/pdb/validation_reports/vk/6vkl | HTTPS FTP |
-関連構造データ
-リンク
-集合体
登録構造単位 |
|
---|---|
1 |
|
-要素
-Exocyst complex component ... , 8種, 8分子 ABCDEFGH
#1: タンパク質 | 分子量: 154889.547 Da / 分子数: 1 / 由来タイプ: 天然 由来: (天然) Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (パン酵母) 株: ATCC 204508 / S288c / 参照: UniProt: P33332 |
---|---|
#2: タンパク質 | 分子量: 112236.875 Da / 分子数: 1 / 由来タイプ: 天然 由来: (天然) Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (パン酵母) 株: ATCC 204508 / S288c / 参照: UniProt: P89102 |
#3: タンパク質 | 分子量: 93539.703 Da / 分子数: 1 / 由来タイプ: 天然 由来: (天然) Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (パン酵母) 株: ATCC 204508 / S288c / 参照: UniProt: P32844 |
#4: タンパク質 | 分子量: 122367.109 Da / 分子数: 1 / 由来タイプ: 天然 由来: (天然) Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (パン酵母) 株: ATCC 204508 / S288c / 参照: UniProt: P32855 |
#5: タンパク質 | 分子量: 100459.578 Da / 分子数: 1 / 由来タイプ: 天然 由来: (天然) Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (パン酵母) 株: ATCC 204508 / S288c / 参照: UniProt: Q06245 |
#6: タンパク質 | 分子量: 105166.641 Da / 分子数: 1 / 由来タイプ: 天然 由来: (天然) Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (パン酵母) 株: ATCC 204508 / S288c / 参照: UniProt: P22224 |
#7: タンパク質 | 分子量: 71382.328 Da / 分子数: 1 / 由来タイプ: 天然 由来: (天然) Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (パン酵母) 株: ATCC 204508 / S288c / 参照: UniProt: P19658 |
#8: タンパク質 | 分子量: 85649.672 Da / 分子数: 1 / 由来タイプ: 天然 由来: (天然) Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (パン酵母) 株: ATCC 204508 / S288c / 参照: UniProt: P38261 |
-実験情報
-実験
実験 | 手法: 電子顕微鏡法 |
---|---|
EM実験 | 試料の集合状態: PARTICLE / 3次元再構成法: 単粒子再構成法 |
-試料調製
構成要素 | 名称: NEGATIVE STAIN MAP OF THE YEAST EXOCYST COMPLEX / タイプ: COMPLEX / Entity ID: all / 由来: NATURAL |
---|---|
分子量 | 実験値: NO |
由来(天然) | 生物種: Saccharomyces cerevisiae (パン酵母) |
緩衝液 | pH: 7.4 |
試料 | 濃度: 0.3 mg/ml / 包埋: NO / シャドウイング: NO / 染色: YES / 凍結: NO |
染色 | タイプ: NEGATIVE / 染色剤: Uranyl Acetate |
試料支持 | 詳細: unspecified |
-電子顕微鏡撮影
実験機器 | モデル: Titan Krios / 画像提供: FEI Company |
---|---|
顕微鏡 | モデル: FEI TITAN KRIOS |
電子銃 | 電子線源: FIELD EMISSION GUN / 加速電圧: 300 kV / 照射モード: FLOOD BEAM |
電子レンズ | モード: BRIGHT FIELD / 倍率(公称値): 22500 X / 最大 デフォーカス(公称値): 3000 nm / 最小 デフォーカス(公称値): 2000 nm / Cs: 2.7 mm |
撮影 | 電子線照射量: 50 e/Å2 フィルム・検出器のモデル: GATAN K2 SUMMIT (4k x 4k) 実像数: 6466 |
-解析
EMソフトウェア | 名称: UCSF Chimera / カテゴリ: モデルフィッティング | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
画像処理 |
| ||||||||||||
CTF補正 |
| ||||||||||||
対称性 |
| ||||||||||||
3次元再構成 | アルゴリズム: FOURIER SPACE / Entry-ID: 6VKL / クラス平均像の数: 1 / 粒子像の数: 67509 / 解像度: 15 Å / 解像度の算出法: FSC 0.5 CUT-OFF / 対称性のタイプ: POINT
| ||||||||||||
原子モデル構築 | プロトコル: RIGID BODY FIT / 空間: REAL | ||||||||||||
原子モデル構築 | PDB-ID: 5YFP Accession code: 5YFP / Source name: PDB / タイプ: experimental model | ||||||||||||
精密化 | 最高解像度: 15 Å |