[English] 日本語
Yorodumi
- PDB-6ud4: GluA2 in complex with its auxiliary subunit CNIH3 in AS map II - ... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 6ud4
TitleGluA2 in complex with its auxiliary subunit CNIH3 in AS map II - (LBD-TMD-C3(AS) II)- with antagonist ZK200775, without NTD
Components
  • Glutamate receptor 2
  • Protein cornichon homolog 3
KeywordsTRANSPORT PROTEIN / ionotropic glutamate receptor / AMPA receptor / cornichon / auxiliary subunit / ion channel / ligand gated ion channel / synaptic transmission / excitatory synaptic transmission / neurotransmitter receptor / stargazin / TARP / lipid / MPQX
Function / homology
Function and homology information


Cargo concentration in the ER / COPII-mediated vesicle transport / localization within membrane / regulation of AMPA receptor activity / neurotransmitter receptor localization to postsynaptic specialization membrane / spine synapse / dendritic spine neck / dendritic spine head / Activation of AMPA receptors / perisynaptic space ...Cargo concentration in the ER / COPII-mediated vesicle transport / localization within membrane / regulation of AMPA receptor activity / neurotransmitter receptor localization to postsynaptic specialization membrane / spine synapse / dendritic spine neck / dendritic spine head / Activation of AMPA receptors / perisynaptic space / AMPA glutamate receptor activity / ligand-gated monoatomic cation channel activity / channel regulator activity / Trafficking of GluR2-containing AMPA receptors / response to lithium ion / immunoglobulin binding / AMPA glutamate receptor complex / kainate selective glutamate receptor activity / ionotropic glutamate receptor complex / extracellularly glutamate-gated ion channel activity / cellular response to glycine / asymmetric synapse / regulation of receptor recycling / Unblocking of NMDA receptors, glutamate binding and activation / positive regulation of synaptic transmission / glutamate receptor binding / extracellular ligand-gated monoatomic ion channel activity / glutamate-gated receptor activity / response to fungicide / glutamate-gated calcium ion channel activity / presynaptic active zone membrane / vesicle-mediated transport / regulation of synaptic transmission, glutamatergic / somatodendritic compartment / dendrite membrane / cellular response to brain-derived neurotrophic factor stimulus / cytoskeletal protein binding / ligand-gated monoatomic ion channel activity involved in regulation of presynaptic membrane potential / ionotropic glutamate receptor binding / dendrite cytoplasm / ionotropic glutamate receptor signaling pathway / regulation of membrane potential / SNARE binding / dendritic shaft / synaptic transmission, glutamatergic / synaptic membrane / transmitter-gated monoatomic ion channel activity involved in regulation of postsynaptic membrane potential / PDZ domain binding / protein tetramerization / postsynaptic density membrane / establishment of protein localization / modulation of chemical synaptic transmission / Schaffer collateral - CA1 synapse / terminal bouton / receptor internalization / cerebral cortex development / synaptic vesicle membrane / synaptic vesicle / presynapse / signaling receptor activity / presynaptic membrane / amyloid-beta binding / growth cone / scaffold protein binding / chemical synaptic transmission / perikaryon / postsynaptic membrane / dendritic spine / postsynaptic density / neuron projection / axon / neuronal cell body / glutamatergic synapse / dendrite / synapse / protein-containing complex binding / protein kinase binding / cell surface / endoplasmic reticulum / protein-containing complex / identical protein binding / membrane / plasma membrane
Similarity search - Function
Cornichon / Cornichon, conserved site / Cornichon protein / Cornichon family signature. / Cornichon / Ionotropic glutamate receptor, metazoa / Ligated ion channel L-glutamate- and glycine-binding site / Ionotropic glutamate receptor, L-glutamate and glycine-binding domain / Ligated ion channel L-glutamate- and glycine-binding site / Ligand-gated ion channel ...Cornichon / Cornichon, conserved site / Cornichon protein / Cornichon family signature. / Cornichon / Ionotropic glutamate receptor, metazoa / Ligated ion channel L-glutamate- and glycine-binding site / Ionotropic glutamate receptor, L-glutamate and glycine-binding domain / Ligated ion channel L-glutamate- and glycine-binding site / Ligand-gated ion channel / : / Ionotropic glutamate receptor / Eukaryotic homologues of bacterial periplasmic substrate binding proteins. / Receptor, ligand binding region / Receptor family ligand binding region / Periplasmic binding protein-like I
Similarity search - Domain/homology
CHOLESTEROL / (2R)-2,3-dihydroxypropyl (9Z)-octadec-9-enoate / Chem-ZK1 / Glutamate receptor 2 / Protein cornichon homolog 3
Similarity search - Component
Biological speciesRattus norvegicus (Norway rat)
Mus musculus (house mouse)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.3 Å
AuthorsNakagawa, T.
Funding support United States, 1items
OrganizationGrant numberCountry
National Institutes of Health/Eunice Kennedy Shriver National Institute of Child Health & Human Development (NIH/NICHD)R01HD061543 United States
CitationJournal: Science / Year: 2019
Title: Structures of the AMPA receptor in complex with its auxiliary subunit cornichon.
Authors: Terunaga Nakagawa /
Abstract: In the brain, AMPA-type glutamate receptors (AMPARs) form complexes with their auxiliary subunits and mediate the majority of fast excitatory neurotransmission. Signals transduced by these complexes ...In the brain, AMPA-type glutamate receptors (AMPARs) form complexes with their auxiliary subunits and mediate the majority of fast excitatory neurotransmission. Signals transduced by these complexes are critical for synaptic plasticity, learning, and memory. The two major categories of AMPAR auxiliary subunits are transmembrane AMPAR regulatory proteins (TARPs) and cornichon homologs (CNIHs); these subunits share little homology and play distinct roles in controlling ion channel gating and trafficking of AMPAR. Here, I report high-resolution cryo-electron microscopy structures of AMPAR in complex with CNIH3. Contrary to its predicted membrane topology, CNIH3 lacks an extracellular domain and instead contains four membrane-spanning helices. The protein-protein interaction interface that dictates channel modulation and the lipids surrounding the complex are revealed. These structures provide insights into the molecular mechanism for ion channel modulation and assembly of AMPAR/CNIH3 complexes.
History
DepositionSep 18, 2019Deposition site: RCSB / Processing site: RCSB
Revision 1.0Dec 4, 2019Provider: repository / Type: Initial release
Revision 1.1Dec 11, 2019Group: Author supporting evidence / Category: pdbx_audit_support / Item: _pdbx_audit_support.funding_organization
Revision 1.2Dec 18, 2019Group: Database references / Category: citation / citation_author
Item: _citation.journal_volume / _citation.page_first ..._citation.journal_volume / _citation.page_first / _citation.page_last / _citation.pdbx_database_id_PubMed / _citation.title / _citation_author.identifier_ORCID
Revision 1.3Oct 16, 2024Group: Data collection / Database references / Structure summary
Category: chem_comp_atom / chem_comp_bond ...chem_comp_atom / chem_comp_bond / database_2 / em_admin / pdbx_entry_details / pdbx_modification_feature
Item: _database_2.pdbx_DOI / _database_2.pdbx_database_accession ..._database_2.pdbx_DOI / _database_2.pdbx_database_accession / _em_admin.last_update / _pdbx_entry_details.has_protein_modification

-
Structure visualization

Movie
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-20733
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Glutamate receptor 2
B: Glutamate receptor 2
E: Protein cornichon homolog 3
F: Protein cornichon homolog 3
G: Protein cornichon homolog 3
H: Protein cornichon homolog 3
C: Glutamate receptor 2
D: Glutamate receptor 2
hetero molecules


Theoretical massNumber of molelcules
Total (without water)483,78220
Polymers479,1738
Non-polymers4,61012
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: gel filtration
TypeNameSymmetry operationNumber
identity operation1_5551
Buried area32050 Å2
ΔGint-325 kcal/mol
Surface area96810 Å2

-
Components

#1: Protein
Glutamate receptor 2 / GluR-2 / AMPA-selective glutamate receptor 2 / GluR-B / GluR-K2 / Glutamate receptor ionotropic / ...GluR-2 / AMPA-selective glutamate receptor 2 / GluR-B / GluR-K2 / Glutamate receptor ionotropic / AMPA 2 / GluA2


Mass: 99530.391 Da / Num. of mol.: 4
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Rattus norvegicus (Norway rat) / Gene: Gria2, Glur2 / Production host: Homo sapiens (human) / References: UniProt: P19491
#2: Protein
Protein cornichon homolog 3 / CNIH-3 / Cornichon family AMPA receptor auxiliary protein 3


Mass: 20262.758 Da / Num. of mol.: 4
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Mus musculus (house mouse) / Gene: Cnih3 / Production host: Homo sapiens (human) / References: UniProt: Q6ZWS4
#3: Chemical
ChemComp-ZK1 / {[7-morpholin-4-yl-2,3-dioxo-6-(trifluoromethyl)-3,4-dihydroquinoxalin-1(2H)-yl]methyl}phosphonic acid / [[3,4-Dihydro-7-(4-morpholinyl)-2,3-dioxo-6-(trifluorom ethyl)-1(2H)-quinoxalinyl]methyl]phosphonic acid


Mass: 409.254 Da / Num. of mol.: 4 / Source method: obtained synthetically / Formula: C14H15F3N3O6P / Feature type: SUBJECT OF INVESTIGATION / Comment: antagonist, medication*YM
#4: Chemical
ChemComp-OLC / (2R)-2,3-dihydroxypropyl (9Z)-octadec-9-enoate / 1-Oleoyl-R-glycerol


Mass: 356.540 Da / Num. of mol.: 4 / Source method: obtained synthetically / Formula: C21H40O4 / Feature type: SUBJECT OF INVESTIGATION
#5: Chemical
ChemComp-CLR / CHOLESTEROL


Mass: 386.654 Da / Num. of mol.: 4 / Source method: obtained synthetically / Formula: C27H46O / Feature type: SUBJECT OF INVESTIGATION
Has ligand of interestY
Has protein modificationY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

Component
IDNameTypeDetailsEntity IDParent-IDSource
1GluA2 in complex with CNIH3 at 4:4 stoichiometryCOMPLEXBound to antagonist ZK200775 (MPQX). Lipid densities are observed.#1-#20RECOMBINANT
2Glutamate receptor 2COMPLEX#11RECOMBINANT
3Protein cornichon homolog 3COMPLEX#21RECOMBINANT
Molecular weightValue: 0.47 MDa / Experimental value: NO
Source (natural)
IDEntity assembly-IDOrganismNcbi tax-ID
12Rattus norvegicus (Norway rat)10116
23Mus musculus (house mouse)10090
Source (recombinant)
IDEntity assembly-IDOrganismNcbi tax-IDStrain
12Homo sapiens (human)9606HEK
23Homo sapiens (human)9606
Buffer solutionpH: 8
Buffer component
IDConc.NameFormulaBuffer-ID
120 mMTrisTrisHCl1
2150 mMsodium chlorideNaCl1
30.05 %GDNGDN1
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationInstrument: FEI VITROBOT MARK IV / Cryogen name: ETHANE / Humidity: 100 % / Chamber temperature: 277.15 K

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD / Nominal magnification: 81000 X / Nominal defocus max: 2000 nm / Nominal defocus min: 800 nm / Cs: 2.7 mm
Specimen holderCryogen: NITROGEN / Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER
Image recordingAverage exposure time: 6 sec. / Electron dose: 58.5 e/Å2 / Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k) / Num. of grids imaged: 1 / Num. of real images: 11340
EM imaging opticsEnergyfilter name: GIF Bioquantum / Energyfilter slit width: 20 eV

-
Processing

EM software
IDNameVersionCategory
1RELION3particle selection
2SerialEMimage acquisition
4CTFFIND4CTF correction
7Cootmodel fitting
9PHENIXmodel refinement
10RELION3.06initial Euler assignment
11RELION3.06final Euler assignment
12RELION3.06classification
13RELION3.063D reconstruction
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
Particle selectionNum. of particles selected: 6780000
SymmetryPoint symmetry: C2 (2 fold cyclic)
3D reconstructionResolution: 3.3 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 84584 / Symmetry type: POINT
Atomic model buildingSpace: REAL

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more