National Natural Science Foundation of China (NSFC)
China
Citation
Journal: Cell / Year: 2025 Title: Structural basis for the concurrence of template recycling and RNA capping in SARS-CoV-2. Authors: Liming Yan / Yucen Huang / Yixiao Liu / Ji Ge / Shan Gao / Liping Tan / Lu Liu / Zhenyu Liu / Sihan Ye / Junbo Wang / Jiangran Xiong / Yu Zhou / Hesheng Zhao / Xiaoyue Zhao / Luke W Guddat / ...Authors: Liming Yan / Yucen Huang / Yixiao Liu / Ji Ge / Shan Gao / Liping Tan / Lu Liu / Zhenyu Liu / Sihan Ye / Junbo Wang / Jiangran Xiong / Yu Zhou / Hesheng Zhao / Xiaoyue Zhao / Luke W Guddat / Yan Gao / Lan Zhu / Zihe Rao / Zhiyong Lou / Abstract: In the SARS-CoV-2 replication-transcription complex (RTC), the nascent template-product duplex is unwound into a template strand for recycling and a product strand that needs to be capped. Here, we ...In the SARS-CoV-2 replication-transcription complex (RTC), the nascent template-product duplex is unwound into a template strand for recycling and a product strand that needs to be capped. Here, we determined structures of the SARS-CoV-2 RTC in the pre- and post-capping initiation (CI) states. In the pre-CI state, the RTC has a dimer-of-dimeric architecture (ddRTC). The upstream RNA duplex in one RTC is reciprocally unwound by a helicase in a head-to-head-positioned RTC in the 3'-5' direction. The helicases bind either ADP or ADP⋅P in their ATP-binding pockets, suggesting a mechanism for ATP-hydrolysis-driven unwinding. In the post-CI state, the binding of nsp9 to the nsp12 nidovirus RdRp-associated nucleotidyltransferase (NiRAN) disrupts the ddRTC. The N terminus of nsp9 and the triphosphorylated 5' end of the product strand co-localize in NiRAN's catalytic site, exhibiting the state prior to nsp9 RNAylation for capping. These results provide an insight into the concurrence of template recycling and RNA capping in the SARS-CoV-2 RTC.
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi