+
Open data
-
Basic information
Entry | ![]() | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | CryoEM structure of SV40 LTag bound to SV40 origin DNA | |||||||||
![]() | ||||||||||
![]() |
| |||||||||
![]() | Helicase / ATPase / SV40 origin DNA / AMP-PNP / DNA replication / TRANSLOCASE | |||||||||
Biological species | ![]() | |||||||||
Method | single particle reconstruction / cryo EM / Resolution: 3.7 Å | |||||||||
![]() | Danazumi AU / Shahid T / Tehseen M / Alhudhali L / Clark A / Savva CG / Hamdan SM / De Biasio A | |||||||||
Funding support | ![]()
| |||||||||
![]() | ![]() Title: Structural dynamics of DNA unwinding by a replicative helicase. Authors: Taha Shahid / Ammar U Danazumi / Muhammad Tehseen / Lubna Alhudhali / Alice R Clark / Christos G Savva / Samir M Hamdan / Alfredo De Biasio / ![]() ![]() Abstract: Hexameric helicases are nucleotide-driven molecular machines that unwind DNA to initiate replication across all domains of life. Despite decades of intensive study, several critical aspects of their ...Hexameric helicases are nucleotide-driven molecular machines that unwind DNA to initiate replication across all domains of life. Despite decades of intensive study, several critical aspects of their function remain unresolved: the site and mechanism of DNA strand separation, the mechanics of unwinding propagation, and the dynamic relationship between nucleotide hydrolysis and DNA movement. Here, using cryo-electron microscopy (cryo-EM), we show that the simian virus 40 large tumour antigen (LTag) helicase assembles in the form of head-to-head hexamers at replication origins, melting DNA at two symmetrically positioned sites to establish bidirectional replication forks. Through continuous heterogeneity analysis, we characterize the conformational landscape of LTag on forked DNA under catalytic conditions, demonstrating coordinated motions that drive DNA translocation and unwinding. We show that the helicase pulls the tracking strand through DNA-binding loops lining the central channel, while directing the non-tracking strand out of the rear, in a cyclic process. ATP hydrolysis functions as an 'entropy switch', removing blocks to translocation rather than directly powering DNA movement. Our structures show the allosteric couplings between nucleotide turnover and subunit motions that enable DNA unwinding while maintaining dedicated exit paths for the separated strands. These findings provide a comprehensive model for replication fork establishment and progression that extends from viral to eukaryotic systems. More broadly, they introduce fundamental principles of the mechanism by which ATP-dependent enzymes achieve efficient mechanical work through entropy-driven allostery. | |||||||||
History |
|
-
Structure visualization
Supplemental images |
---|
-
Downloads & links
-EMDB archive
Map data | ![]() | 513.4 MB | ![]() | |
---|---|---|---|---|
Header (meta data) | ![]() ![]() | 14.7 KB 14.7 KB | Display Display | ![]() |
FSC (resolution estimation) | ![]() | 19.1 KB | Display | ![]() |
Images | ![]() | 61.7 KB | ||
Masks | ![]() | 600.7 MB | ![]() | |
Filedesc metadata | ![]() | 5.2 KB | ||
Others | ![]() ![]() | 504.1 MB 504.4 MB | ||
Archive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 9evhC ![]() 9evpC ![]() 9exdC ![]() 9f3tC ![]() 9f3uC ![]() 9f5iC ![]() 9f73C ![]() 9f74C ![]() 9f75C ![]() 9f7nC ![]() 9f9nC ![]() 9f9oC ![]() 9f9wC ![]() 9f9xC ![]() 9fa1C ![]() 9fa2C ![]() 9fb0C ![]() 9fb4C ![]() 9fb5C ![]() 9fb6C ![]() 9kaeC ![]() 9kakC C: citing same article ( |
---|
-
Links
EMDB pages | ![]() ![]() |
---|
-
Map
File | ![]() | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||
Voxel size | X=Y=Z: 0.93 Å | ||||||||||||||||||||||||||||||||||||
Density |
| ||||||||||||||||||||||||||||||||||||
Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||
Details | EMDB XML:
|
-Supplemental data
-Mask #1
File | ![]() | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-Half map: #2
File | emd_62502_half_map_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-Half map: #1
File | emd_62502_half_map_2.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-
Sample components
-Entire : Complex of SV40 LTag with SV40 origin DNA
Entire | Name: Complex of SV40 LTag with SV40 origin DNA |
---|---|
Components |
|
-Supramolecule #1: Complex of SV40 LTag with SV40 origin DNA
Supramolecule | Name: Complex of SV40 LTag with SV40 origin DNA / type: complex / ID: 1 / Parent: 0 / Macromolecule list: all |
---|---|
Source (natural) | Organism: ![]() |
Molecular weight | Theoretical: 1 MDa |
-Macromolecule #1: LTag
Macromolecule | Name: LTag / type: other / ID: 1 / Classification: other |
---|---|
Source (natural) | Organism: ![]() |
Sequence | String: MDKVLNREES LQLMDLLGLE RSAWGNIPLM RKAYLKKCKE FHPDKGGDEE KMKKMNTLYK KMEDGVKYA HQPDFGGFWD ATEIPTYGTD EWEQWWNAFN EENLFCSEEM PSSDDEATAD S QHSTPPKK KRKVEDPKDF PSELLSFLSH AVFSNRTLAC FAIYTTKEKA ...String: MDKVLNREES LQLMDLLGLE RSAWGNIPLM RKAYLKKCKE FHPDKGGDEE KMKKMNTLYK KMEDGVKYA HQPDFGGFWD ATEIPTYGTD EWEQWWNAFN EENLFCSEEM PSSDDEATAD S QHSTPPKK KRKVEDPKDF PSELLSFLSH AVFSNRTLAC FAIYTTKEKA ALLYKKIMEK YS VTFISRH NSYNHNILFF LTPHRHRVSA INNYAQKLCT FSFLICKGVN KEYLMYSALT RDP FSVIEE SLPGGLKEHD FNPEEAEETK QVSWKLVTEY AMETKCDDVL LLLGMYLEFQ YSFE MCLKC IKKEQPSHYK YHEKHYANAA IFADSKNQKT ICQQAVDTVL AKKRVDSLQL TREQM LTNR FNDLLDRMDI MFGSTGSADI EEWMAGVAWL HCLLPKMDSV VYDFLKCMVY NIPKKR YWL FKGPIDSGKT TLAAALLELC GGKALNVNLP LDRLNFELGV AIDQFLVVFE DVKGTGG ES RDLPSGQGIN NLDNLRDYLD GSVKVNLEKK HLNKRTQIFP PGIVTMNEYS VPKTLQAR F VKQIDFRPKD YLKHCLERSE FLLEKRIIQS GIALLLMLIW YRPVAEFAQS IQSRIVEWK ERLDKEFSLS VYQKMKFNVA MGIGVLDWLR NSDDDDEDSQ ENADKNEDGG EKNMEDSGHE TGIDSQSQG SFQAPQSSQS VHDHNQPYHI CRGFTCFKKP PTPPPEPET |
Recombinant expression | Organism: ![]() ![]() |
-Experimental details
-Structure determination
Method | cryo EM |
---|---|
![]() | single particle reconstruction |
Aggregation state | particle |
-
Sample preparation
Concentration | 0.5 mg/mL |
---|---|
Buffer | pH: 8 |
Vitrification | Cryogen name: ETHANE / Chamber humidity: 100 % / Chamber temperature: 277.15 K / Instrument: FEI VITROBOT MARK IV |
-
Electron microscopy
Microscope | TFS KRIOS |
---|---|
Image recording | Film or detector model: FEI FALCON IV (4k x 4k) / Average exposure time: 5.0 sec. / Average electron dose: 41.28 e/Å2 |
Electron beam | Acceleration voltage: 300 kV / Electron source: ![]() |
Electron optics | C2 aperture diameter: 50.0 µm / Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Cs: 2.7 mm / Nominal defocus max: 2.6 µm / Nominal defocus min: 1.1 µm / Nominal magnification: 130000 |
Sample stage | Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER / Cooling holder cryogen: NITROGEN |
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
+
Image processing
-Atomic model buiding 1
Refinement | Protocol: FLEXIBLE FIT |
---|