[English] 日本語

- EMDB-61622: Structure of native di-heteromeric GluN1-GluN2B NMDA receptor in ... -
+
Open data
-
Basic information
Entry | ![]() | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | Structure of native di-heteromeric GluN1-GluN2B NMDA receptor in rat cortex and hippocampus | |||||||||
![]() | ||||||||||
![]() |
| |||||||||
![]() | MEMBRANE PROTEIN / native NMDA receptor / adult rat cartex & hippocampus / GluN2A / GluN2B / MEMBRANE PROTEIN-IMMUNE SYSTEM complex | |||||||||
Function / homology | ![]() cellular response to curcumin / cellular response to corticosterone stimulus / cellular response to magnesium starvation / sensory organ development / pons maturation / positive regulation of Schwann cell migration / regulation of cell communication / sensitization / regulation of cAMP/PKA signal transduction / EPHB-mediated forward signaling ...cellular response to curcumin / cellular response to corticosterone stimulus / cellular response to magnesium starvation / sensory organ development / pons maturation / positive regulation of Schwann cell migration / regulation of cell communication / sensitization / regulation of cAMP/PKA signal transduction / EPHB-mediated forward signaling / auditory behavior / Assembly and cell surface presentation of NMDA receptors / olfactory learning / conditioned taste aversion / dendritic branch / response to hydrogen sulfide / regulation of respiratory gaseous exchange / response to other organism / positive regulation of inhibitory postsynaptic potential / protein localization to postsynaptic membrane / apical dendrite / regulation of ARF protein signal transduction / response to methylmercury / fear response / transmitter-gated monoatomic ion channel activity / response to glycine / propylene metabolic process / response to carbohydrate / cellular response to dsRNA / interleukin-1 receptor binding / negative regulation of dendritic spine maintenance / cellular response to lipid / positive regulation of glutamate secretion / response to growth hormone / Synaptic adhesion-like molecules / regulation of monoatomic cation transmembrane transport / NMDA glutamate receptor activity / RAF/MAP kinase cascade / voltage-gated monoatomic cation channel activity / response to manganese ion / neurotransmitter receptor complex / NMDA selective glutamate receptor complex / ligand-gated sodium channel activity / response to morphine / calcium ion transmembrane import into cytosol / glutamate binding / regulation of axonogenesis / neuromuscular process / regulation of dendrite morphogenesis / protein heterotetramerization / regulation of synapse assembly / male mating behavior / heterocyclic compound binding / glycine binding / positive regulation of reactive oxygen species biosynthetic process / receptor clustering / parallel fiber to Purkinje cell synapse / positive regulation of calcium ion transport into cytosol / suckling behavior / regulation of postsynaptic membrane potential / response to amine / small molecule binding / startle response / social behavior / monoatomic cation transmembrane transport / associative learning / : / behavioral response to pain / response to magnesium ion / regulation of MAPK cascade / regulation of neuronal synaptic plasticity / action potential / cellular response to glycine / extracellularly glutamate-gated ion channel activity / monoatomic cation transport / excitatory synapse / positive regulation of excitatory postsynaptic potential / positive regulation of dendritic spine maintenance / monoatomic ion channel complex / Unblocking of NMDA receptors, glutamate binding and activation / long-term memory / cellular response to manganese ion / behavioral fear response / postsynaptic density, intracellular component / glutamate receptor binding / neuron development / synaptic cleft / prepulse inhibition / multicellular organismal response to stress / detection of mechanical stimulus involved in sensory perception of pain / phosphatase binding / response to electrical stimulus / monoatomic cation channel activity / glutamate-gated receptor activity / response to mechanical stimulus / calcium ion homeostasis / response to fungicide / D2 dopamine receptor binding / cell adhesion molecule binding / ionotropic glutamate receptor binding Similarity search - Function | |||||||||
Biological species | ![]() ![]() ![]() ![]() | |||||||||
Method | single particle reconstruction / cryo EM / Resolution: 5.4 Å | |||||||||
![]() | Zhang M / Feng J / Li Y / Zhu S | |||||||||
Funding support | ![]()
| |||||||||
![]() | ![]() Title: Assembly and architecture of endogenous NMDA receptors in adult cerebral cortex and hippocampus. Authors: Ming Zhang / Juan Feng / Chun Xie / Nan Song / Chaozhi Jin / Jian Wang / Qun Zhao / Lihua Zhang / Boshuang Wang / Yidi Sun / Fei Guo / Yang Li / Shujia Zhu / ![]() Abstract: The cerebral cortex and hippocampus are crucial brain regions for learning and memory, which depend on activity-induced synaptic plasticity involving N-methyl-ᴅ-aspartate receptors (NMDARs). ...The cerebral cortex and hippocampus are crucial brain regions for learning and memory, which depend on activity-induced synaptic plasticity involving N-methyl-ᴅ-aspartate receptors (NMDARs). However, subunit assembly and molecular architecture of endogenous NMDARs (eNMDARs) in the brain remain elusive. Using conformation- and subunit-dependent antibodies, we purified eNMDARs from adult rat cerebral cortex and hippocampus. Three major subtypes of GluN1-N2A-N2B, GluN1-N2B, and GluN1-N2A eNMDARs were resolved by cryoelectron microscopy (cryo-EM) at the resolution up to 4.2 Å. The particle ratio of these three subtypes was 9:7:4, indicating that about half of GluN2A and GluN2B subunits are incorporated into the tri-heterotetramers. Structural analysis revealed the asymmetric architecture of the GluN1-N2A-N2B receptor throughout the extracellular to the transmembrane layers. Moreover, the conformational variations between GluN1-N2B and GluN1-N2A-N2B receptors revealed the distinct biophysical properties across different eNMDAR subtypes. Our findings imply the structural and functional complexity of eNMDARs and shed light on structure-based therapeutic design targeting these eNMDARs in vivo. | |||||||||
History |
|
-
Structure visualization
Supplemental images |
---|
-
Downloads & links
-EMDB archive
Map data | ![]() | 117.8 MB | ![]() | |
---|---|---|---|---|
Header (meta data) | ![]() ![]() | 24.3 KB 24.3 KB | Display Display | ![]() |
FSC (resolution estimation) | ![]() | 14.6 KB | Display | ![]() |
Images | ![]() | 138.4 KB | ||
Masks | ![]() | 125 MB | ![]() | |
Filedesc metadata | ![]() | 7.7 KB | ||
Others | ![]() ![]() | 115.7 MB 115.7 MB | ||
Archive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 9jnnMC ![]() 8xljC ![]() 8xlkC ![]() 8xllC C: citing same article ( M: atomic model generated by this map |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
EMDB pages | ![]() ![]() |
---|---|
Related items in Molecule of the Month |
-
Map
File | ![]() | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||
Voxel size | X=Y=Z: 1.071 Å | ||||||||||||||||||||||||||||||||||||
Density |
| ||||||||||||||||||||||||||||||||||||
Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||
Details | EMDB XML:
|
-Supplemental data
-Mask #1
File | ![]() | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-Half map: #2
File | emd_61622_half_map_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-Half map: #1
File | emd_61622_half_map_2.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-
Sample components
+Entire : Native di-heteromeric GluN1-GluN2B NMDA receptor in rat cortex an...
+Supramolecule #1: Native di-heteromeric GluN1-GluN2B NMDA receptor in rat cortex an...
+Supramolecule #2: NMDA receptor
+Supramolecule #3: Fab 4F11
+Supramolecule #4: Fab2
+Supramolecule #5: Fab
+Macromolecule #1: Glutamate receptor ionotropic, NMDA 1
+Macromolecule #2: Glutamate receptor ionotropic, NMDA 2B
+Macromolecule #3: Heavy Chain of GluN1 Fab, 4F11
+Macromolecule #4: Light Chain of GluN1 Fab, 4F11
+Macromolecule #5: Heavy Chain of GluN2B Fab2
+Macromolecule #6: Light Chain of GluN2B Fab2
+Macromolecule #9: 2-acetamido-2-deoxy-beta-D-glucopyranose
+Macromolecule #10: (2R)-4-(3-phosphonopropyl)piperazine-2-carboxylic acid
-Experimental details
-Structure determination
Method | cryo EM |
---|---|
![]() | single particle reconstruction |
Aggregation state | tissue |
-
Sample preparation
Buffer | pH: 8 |
---|---|
Vitrification | Cryogen name: ETHANE |
-
Electron microscopy
Microscope | FEI TALOS ARCTICA |
---|---|
Image recording | Film or detector model: DIRECT ELECTRON DE-10 (5k x 4k) / Average electron dose: 60.0 e/Å2 |
Electron beam | Acceleration voltage: 300 kV / Electron source: ![]() |
Electron optics | Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Nominal defocus max: 2.5 µm / Nominal defocus min: 1.0 µm |
Experimental equipment | ![]() Model: Talos Arctica / Image courtesy: FEI Company |