- EMDB-52449: Structure of the transcribing Pol II-TCR-RECQL5 complex -
+
データを開く
IDまたはキーワード:
読み込み中...
-
基本情報
登録情報
データベース: EMDB / ID: EMD-52449
タイトル
Structure of the transcribing Pol II-TCR-RECQL5 complex
マップデータ
Sharpened overall map of EC-TCR-RECQL5
試料
複合体: PolII-TCR-RECQL5 complex
タンパク質・ペプチド: x 18種
DNA: x 2種
RNA: x 1種
リガンド: x 2種
キーワード
transcription elongation / DNA helicase / transcription-coupled repair / RNA polymerase II / TRANSCRIPTION
機能・相同性
機能・相同性情報
RNA polymerase inhibitor activity / mitotic DNA-templated DNA replication / negative regulation of double-strand break repair via nonhomologous end joining / regulation of transcription-coupled nucleotide-excision repair / nucleotide-excision repair complex / chromosome separation / cellular response to camptothecin / regulation of transcription elongation by RNA polymerase II / replication-born double-strand break repair via sister chromatid exchange / B-WICH complex ...RNA polymerase inhibitor activity / mitotic DNA-templated DNA replication / negative regulation of double-strand break repair via nonhomologous end joining / regulation of transcription-coupled nucleotide-excision repair / nucleotide-excision repair complex / chromosome separation / cellular response to camptothecin / regulation of transcription elongation by RNA polymerase II / replication-born double-strand break repair via sister chromatid exchange / B-WICH complex / DNA protection / single strand break repair / positive regulation by virus of viral protein levels in host cell / Formation of RNA Pol II elongation complex / Formation of the Early Elongation Complex / Transcriptional regulation by small RNAs / RNA Polymerase II Pre-transcription Events / TP53 Regulates Transcription of DNA Repair Genes / FGFR2 alternative splicing / RNA polymerase II transcribes snRNA genes / mRNA Capping / mRNA Splicing - Minor Pathway / Processing of Capped Intron-Containing Pre-mRNA / RNA Polymerase II Promoter Escape / RNA Polymerase II Transcription Pre-Initiation And Promoter Opening / RNA Polymerase II Transcription Initiation / RNA Polymerase II Transcription Elongation / RNA Polymerase II Transcription Initiation And Promoter Clearance / RNA Pol II CTD phosphorylation and interaction with CE / Estrogen-dependent gene expression / Formation of TC-NER Pre-Incision Complex / Dual incision in TC-NER / Gap-filling DNA repair synthesis and ligation in TC-NER / mRNA Splicing - Major Pathway / chromatin-protein adaptor activity / response to superoxide / double-strand break repair via classical nonhomologous end joining / spindle assembly involved in female meiosis / photoreceptor cell maintenance / epigenetic programming in the zygotic pronuclei / ATP-dependent chromatin remodeler activity / Cul4-RING E3 ubiquitin ligase complex / nuclear lumen / UV-damage excision repair / response to UV-B / RNA polymerase binding / positive regulation of DNA-templated transcription, elongation / biological process involved in interaction with symbiont / transcription preinitiation complex / regulation of mitotic cell cycle phase transition / positive regulation of transcription by RNA polymerase III / WD40-repeat domain binding / Cul4A-RING E3 ubiquitin ligase complex / DNA 3'-5' helicase / DNA metabolic process / 3'-5' DNA helicase activity / ATP-dependent DNA damage sensor activity / Cul4B-RING E3 ubiquitin ligase complex / ubiquitin ligase complex scaffold activity / negative regulation of reproductive process / negative regulation of developmental process / positive regulation of transcription by RNA polymerase I / RNA polymerase II complex binding / negative regulation of transcription elongation by RNA polymerase II / cullin family protein binding / viral release from host cell / maintenance of transcriptional fidelity during transcription elongation by RNA polymerase II / protein tyrosine kinase activator activity / site of DNA damage / RNA Polymerase I Transcription Initiation / pyrimidine dimer repair / response to X-ray / ATP-dependent activity, acting on DNA / ectopic germ cell programmed cell death / positive regulation of transcription initiation by RNA polymerase II / translation elongation factor activity / transcription by RNA polymerase III / negative regulation of double-strand break repair via homologous recombination / positive regulation of viral genome replication / transcription by RNA polymerase I / positive regulation of double-strand break repair via homologous recombination / RNA polymerase I complex / transcription elongation by RNA polymerase I / RNA polymerase III complex / proteasomal protein catabolic process / transcription-coupled nucleotide-excision repair / response to UV / RNA polymerase II, core complex / tRNA transcription by RNA polymerase III / protein autoubiquitination / JNK cascade / neurogenesis / DNA helicase activity / positive regulation of gluconeogenesis / DNA-directed RNA polymerase complex / isomerase activity / positive regulation of DNA repair / DNA damage checkpoint signaling / transcription elongation factor complex / regulation of DNA-templated transcription elongation 類似検索 - 分子機能
Transcription elongation factor 1 homolog / DNA-directed RNA polymerase subunit beta / DNA-directed RNA polymerases I, II, and III subunit RPABC4 / DNA-directed RNA polymerases I, II, and III subunit RPABC2 / DNA-directed RNA polymerase subunit / RNA polymerase II subunit D / DNA-directed RNA polymerases I, II, and III subunit RPABC5 / DNA-directed RNA polymerase subunit / DNA-directed RNA polymerase II subunit RPB11-a / DNA-directed RNA polymerases I, II, and III subunit RPABC3 ...Transcription elongation factor 1 homolog / DNA-directed RNA polymerase subunit beta / DNA-directed RNA polymerases I, II, and III subunit RPABC4 / DNA-directed RNA polymerases I, II, and III subunit RPABC2 / DNA-directed RNA polymerase subunit / RNA polymerase II subunit D / DNA-directed RNA polymerases I, II, and III subunit RPABC5 / DNA-directed RNA polymerase subunit / DNA-directed RNA polymerase II subunit RPB11-a / DNA-directed RNA polymerases I, II, and III subunit RPABC3 / DNA-directed RNA polymerase II subunit RPB3 / DNA-directed RNA polymerase II subunit E / ATP-dependent DNA helicase Q5 / DNA-directed RNA polymerase II subunit RPB9 / DNA excision repair protein ERCC-6 / DNA excision repair protein ERCC-8 / DNA damage-binding protein 1 / UV-stimulated scaffold protein A 類似検索 - 構成要素
生物種
Homo sapiens (ヒト) / Sus scrofa domesticus (ブタ) / synthetic construct (人工物)
ジャーナル: Nat Struct Mol Biol / 年: 2025 タイトル: Structural basis of RECQL5-induced RNA polymerase II transcription braking and subsequent reactivation. 著者: Luojia Zhang / Yuliya Gordiyenko / Tomos Morgan / Catarina Franco / Ana Tufegdžić Vidaković / Suyang Zhang / 要旨: Abnormally fast transcription elongation can lead to detrimental consequences such as transcription-replication collisions, altered alternative splicing patterns and genome instability. Therefore, ...Abnormally fast transcription elongation can lead to detrimental consequences such as transcription-replication collisions, altered alternative splicing patterns and genome instability. Therefore, elongating RNA polymerase II (Pol II) requires mechanisms to slow its progression, yet the molecular basis of transcription braking remains unclear. RECQL5 is a DNA helicase that functions as a general elongation factor by slowing down Pol II. Here we report cryo-electron microscopy structures of human RECQL5 bound to multiple transcription elongation complexes. Combined with biochemical analysis, we identify an α-helix of RECQL5 responsible for binding Pol II and slowdown of transcription elongation. We further reveal that the transcription-coupled DNA repair (TCR) complex allows Pol II to overcome RECQL5-induced transcription braking through concerted actions of its translocase activity and competition with RECQL5 for engaging Pol II. Additionally, RECQL5 inhibits TCR-mediated Pol II ubiquitination to prevent activation of the DNA repair pathway. Our results suggest a model in which RECQL5 and the TCR complex coordinately regulate transcription elongation rates to ensure transcription efficiency while maintaining genome stability.