+
Open data
-
Basic information
| Entry | ![]() | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Title | Dephosphorylated (E1371Q)CFTR in complex with PKA-C | |||||||||
Map data | Dephosphorylated (E1371Q)CFTR in complex with PKA-C | |||||||||
Sample |
| |||||||||
Keywords | CFTR / PKA / complex / HYDROLASE | |||||||||
| Function / homology | Function and homology informationpositive regulation of voltage-gated chloride channel activity / : / Sec61 translocon complex binding / channel-conductance-controlling ATPase / intracellularly ATP-gated chloride channel activity / CD209 (DC-SIGN) signaling / HDL assembly / Regulation of insulin secretion / positive regulation of enamel mineralization / Rap1 signalling ...positive regulation of voltage-gated chloride channel activity / : / Sec61 translocon complex binding / channel-conductance-controlling ATPase / intracellularly ATP-gated chloride channel activity / CD209 (DC-SIGN) signaling / HDL assembly / Regulation of insulin secretion / positive regulation of enamel mineralization / Rap1 signalling / Ion homeostasis / transepithelial water transport / RHO GTPases regulate CFTR trafficking / PKA activation in glucagon signalling / DARPP-32 events / CREB1 phosphorylation through the activation of Adenylate Cyclase / GPER1 signaling / Factors involved in megakaryocyte development and platelet production / Loss of Nlp from mitotic centrosomes / Recruitment of mitotic centrosome proteins and complexes / Loss of proteins required for interphase microtubule organization from the centrosome / Anchoring of the basal body to the plasma membrane / RET signaling / AURKA Activation by TPX2 / amelogenesis / Interleukin-3, Interleukin-5 and GM-CSF signaling / intracellular pH elevation / Recruitment of NuMA to mitotic centrosomes / VEGFA-VEGFR2 Pathway / PKA activation / MAPK6/MAPK4 signaling / GLI3 is processed to GLI3R by the proteasome / chloride channel inhibitor activity / : / Regulation of PLK1 Activity at G2/M Transition / Hedgehog 'off' state / Golgi-associated vesicle membrane / multicellular organismal-level water homeostasis / cholesterol transport / bicarbonate transport / bicarbonate transmembrane transporter activity / chloride channel regulator activity / vesicle docking involved in exocytosis / membrane hyperpolarization / cAMP-dependent protein kinase / regulation of protein processing / chloride transmembrane transporter activity / cAMP-dependent protein kinase activity / protein localization to lipid droplet / cAMP-dependent protein kinase complex / regulation of bicellular tight junction assembly / cellular response to parathyroid hormone stimulus / regulation of osteoblast differentiation / cellular response to cold / Mitochondrial protein degradation / sperm capacitation / cholesterol biosynthetic process / Glucagon-like Peptide-1 (GLP1) regulates insulin secretion / negative regulation of glycolytic process through fructose-6-phosphate / ciliary base / High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR in endothelial cells / Vasopressin regulates renal water homeostasis via Aquaporins / protein kinase A regulatory subunit binding / RHOQ GTPase cycle / chloride channel activity / intracellular potassium ion homeostasis / mesoderm formation / positive regulation of exocytosis / plasma membrane raft / axoneme / ATPase-coupled transmembrane transporter activity / chloride channel complex / positive regulation of insulin secretion involved in cellular response to glucose stimulus / ABC-type transporter activity / sperm flagellum / postsynaptic modulation of chemical synaptic transmission / regulation of proteasomal protein catabolic process / 14-3-3 protein binding / negative regulation of TORC1 signaling / positive regulation of gluconeogenesis / protein serine/threonine/tyrosine kinase activity / cellular response to glucagon stimulus / acrosomal vesicle / cellular response to forskolin / protein export from nucleus / positive regulation of phagocytosis / chloride transmembrane transport / response to endoplasmic reticulum stress / cellular response to cAMP / positive regulation of protein export from nucleus / negative regulation of smoothened signaling pathway / neural tube closure / PDZ domain binding / neuromuscular junction / cellular response to glucose stimulus / establishment of localization in cell / clathrin-coated endocytic vesicle membrane / positive regulation of cholesterol biosynthetic process / Defective CFTR causes cystic fibrosis / Late endosomal microautophagy Similarity search - Function | |||||||||
| Biological species | ![]() Homo sapiens (human) | |||||||||
| Method | single particle reconstruction / cryo EM / Resolution: 3.5 Å | |||||||||
Authors | Fiedorczuk K / Chen J / Csanady L | |||||||||
| Funding support | United States, 2 items
| |||||||||
Citation | Journal: Proc Natl Acad Sci U S A / Year: 2024Title: The structures of protein kinase A in complex with CFTR: Mechanisms of phosphorylation and noncatalytic activation. Authors: Karol Fiedorczuk / Iordan Iordanov / Csaba Mihályi / Andras Szollosi / László Csanády / Jue Chen / ![]() Abstract: Protein kinase A (PKA) is a key regulator of cellular functions by selectively phosphorylating numerous substrates, including ion channels, enzymes, and transcription factors. It has long served as a ...Protein kinase A (PKA) is a key regulator of cellular functions by selectively phosphorylating numerous substrates, including ion channels, enzymes, and transcription factors. It has long served as a model system for understanding the eukaryotic kinases. Using cryoelectron microscopy, we present complex structures of the PKA catalytic subunit (PKA-C) bound to a full-length protein substrate, the cystic fibrosis transmembrane conductance regulator (CFTR)-an ion channel vital to human health. CFTR gating requires phosphorylation of its regulatory (R) domain. Unphosphorylated CFTR engages PKA-C at two locations, establishing two "catalytic stations" near to, but not directly involving, the R domain. This configuration, coupled with the conformational flexibility of the R domain, permits transient interactions of the eleven spatially separated phosphorylation sites. Furthermore, we determined two structures of the open-pore CFTR stabilized by PKA-C, providing a molecular basis to understand how PKA-C stimulates CFTR currents even in the absence of phosphorylation. | |||||||||
| History |
|
-
Structure visualization
| Supplemental images |
|---|
-
Downloads & links
-EMDB archive
| Map data | emd_47238.map.gz | 307.1 MB | EMDB map data format | |
|---|---|---|---|---|
| Header (meta data) | emd-47238-v30.xml emd-47238.xml | 20.7 KB 20.7 KB | Display Display | EMDB header |
| FSC (resolution estimation) | emd_47238_fsc.xml | 14.6 KB | Display | FSC data file |
| Images | emd_47238.png | 126.3 KB | ||
| Filedesc metadata | emd-47238.cif.gz | 7.8 KB | ||
| Others | emd_47238_half_map_1.map.gz emd_47238_half_map_2.map.gz | 301.2 MB 301.2 MB | ||
| Archive directory | http://ftp.pdbj.org/pub/emdb/structures/EMD-47238 ftp://ftp.pdbj.org/pub/emdb/structures/EMD-47238 | HTTPS FTP |
-Validation report
| Summary document | emd_47238_validation.pdf.gz | 1 MB | Display | EMDB validaton report |
|---|---|---|---|---|
| Full document | emd_47238_full_validation.pdf.gz | 1 MB | Display | |
| Data in XML | emd_47238_validation.xml.gz | 23.8 KB | Display | |
| Data in CIF | emd_47238_validation.cif.gz | 31.1 KB | Display | |
| Arichive directory | https://ftp.pdbj.org/pub/emdb/validation_reports/EMD-47238 ftp://ftp.pdbj.org/pub/emdb/validation_reports/EMD-47238 | HTTPS FTP |
-Related structure data
| Related structure data | ![]() 9dw8MC ![]() 9dw4C ![]() 9dw5C ![]() 9dw7C ![]() 9dw9C M: atomic model generated by this map C: citing same article ( |
|---|---|
| Similar structure data | Similarity search - Function & homology F&H Search |
-
Links
| EMDB pages | EMDB (EBI/PDBe) / EMDataResource |
|---|---|
| Related items in Molecule of the Month |
-
Map
| File | Download / File: emd_47238.map.gz / Format: CCP4 / Size: 325 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES) | ||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Annotation | Dephosphorylated (E1371Q)CFTR in complex with PKA-C | ||||||||||||||||||||||||||||||||||||
| Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||
| Voxel size | X=Y=Z: 0.676 Å | ||||||||||||||||||||||||||||||||||||
| Density |
| ||||||||||||||||||||||||||||||||||||
| Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||
| Details | EMDB XML:
|
-Supplemental data
-Half map: half-map 2
| File | emd_47238_half_map_1.map | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Annotation | half-map 2 | ||||||||||||
| Projections & Slices |
| ||||||||||||
| Density Histograms |
-Half map: half-map 1
| File | emd_47238_half_map_2.map | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Annotation | half-map 1 | ||||||||||||
| Projections & Slices |
| ||||||||||||
| Density Histograms |
-
Sample components
-Entire : Dephosphorylated (E1371Q)CFTR in complex with PKA-C
| Entire | Name: Dephosphorylated (E1371Q)CFTR in complex with PKA-C |
|---|---|
| Components |
|
-Supramolecule #1: Dephosphorylated (E1371Q)CFTR in complex with PKA-C
| Supramolecule | Name: Dephosphorylated (E1371Q)CFTR in complex with PKA-C / type: complex / ID: 1 / Parent: 0 / Macromolecule list: #1-#2 |
|---|---|
| Source (natural) | Organism: ![]() |
| Molecular weight | Theoretical: 210 KDa |
-Macromolecule #1: Cystic fibrosis transmembrane conductance regulator
| Macromolecule | Name: Cystic fibrosis transmembrane conductance regulator / type: protein_or_peptide / ID: 1 / Number of copies: 1 / Enantiomer: LEVO / EC number: channel-conductance-controlling ATPase |
|---|---|
| Source (natural) | Organism: Homo sapiens (human) |
| Molecular weight | Theoretical: 168.334469 KDa |
| Recombinant expression | Organism: Homo sapiens (human) |
| Sequence | String: MQRSPLEKAS VVSKLFFSWT RPILRKGYRQ RLELSDIYQI PSVDSADNLS EKLEREWDRE LASKKNPKLI NALRRCFFWR FMFYGIFLY LGEVTKAVQP LLLGRIIASY DPDNKEERSI AIYLGIGLCL LFIVRTLLLH PAIFGLHHIG MQMRIAMFSL I YKKTLKLS ...String: MQRSPLEKAS VVSKLFFSWT RPILRKGYRQ RLELSDIYQI PSVDSADNLS EKLEREWDRE LASKKNPKLI NALRRCFFWR FMFYGIFLY LGEVTKAVQP LLLGRIIASY DPDNKEERSI AIYLGIGLCL LFIVRTLLLH PAIFGLHHIG MQMRIAMFSL I YKKTLKLS SRVLDKISIG QLVSLLSNNL NKFDEGLALA HFVWIAPLQV ALLMGLIWEL LQASAFCGLG FLIVLALFQA GL GRMMMKY RDQRAGKISE RLVITSEMIE NIQSVKAYCW EEAMEKMIEN LRQTELKLTR KAAYVRYFNS SAFFFSGFFV VFL SVLPYA LIKGIILRKI FTTISFCIVL RMAVTRQFPW AVQTWYDSLG AINKIQDFLQ KQEYKTLEYN LTTTEVVMEN VTAF WEEGF GELFEKAKQN NNNRKTSNGD DSLFFSNFSL LGTPVLKDIN FKIERGQLLA VAGSTGAGKT SLLMVIMGEL EPSEG KIKH SGRISFCSQF SWIMPGTIKE NIIFGVSYDE YRYRSVIKAC QLEEDISKFA EKDNIVLGEG GITLSGGQRA RISLAR AVY KDADLYLLDS PFGYLDVLTE KEIFESCVCK LMANKTRILV TSKMEHLKKA DKILILHEGS SYFYGTFSEL QNLQPDF SS KLMGCDSFDQ FSAERRNSIL TETLHRFSLE GDAPVSWTET KKQSFKQTGE FGEKRKNSIL NPINSIRKFS IVQKTPLQ M NGIEEDSDEP LERRLSLVPD SEQGEAILPR ISVISTGPTL QARRRQSVLN LMTHSVNQGQ NIHRKTTAST RKVSLAPQA NLTELDIYSR RLSQETGLEI SEEINEEDLK ECFFDDMESI PAVTTWNTYL RYITVHKSLI FVLIWCLVIF LAEVAASLVV LWLLGNTPL QDKGNSTHSR NNSYAVIITS TSSYYVFYIY VGVADTLLAM GFFRGLPLVH TLITVSKILH HKMLHSVLQA P MSTLNTLK AGGILNRFSK DIAILDDLLP LTIFDFIQLL LIVIGAIAVV AVLQPYIFVA TVPVIVAFIM LRAYFLQTSQ QL KQLESEG RSPIFTHLVT SLKGLWTLRA FGRQPYFETL FHKALNLHTA NWFLYLSTLR WFQMRIEMIF VIFFIAVTFI SIL TTGEGE GRVGIILTLA MNIMSTLQWA VNSSIDVDSL MRSVSRVFKF IDMPTEGKPT KSTKPYKNGQ LSKVMIIENS HVKK DDIWP SGGQMTVKDL TAKYTEGGNA ILENISFSIS PGQRVGLLGR TGSGKSTLLS AFLRLLNTEG EIQIDGVSWD SITLQ QWRK AFGVIPQKVF IFSGTFRKNL DPYEQWSDQE IWKVADEVGL RSVIEQFPGK LDFVLVDGGC VLSHGHKQLM CLARSV LSK AKILLLDQPS AHLDPVTYQI IRRTLKQAFA DCTVILCEHR IEAMLECQQF LVIEENKVRQ YDSIQKLLNE RSLFRQA IS PSDRVKLFPH RNSSKCKSKP QIAALKEETE EEVQDTRL UniProtKB: Cystic fibrosis transmembrane conductance regulator |
-Macromolecule #2: cAMP-dependent protein kinase catalytic subunit alpha
| Macromolecule | Name: cAMP-dependent protein kinase catalytic subunit alpha / type: protein_or_peptide / ID: 2 / Number of copies: 1 / Enantiomer: LEVO / EC number: cAMP-dependent protein kinase |
|---|---|
| Source (natural) | Organism: ![]() |
| Molecular weight | Theoretical: 40.757633 KDa |
| Sequence | String: MGNAAAAKKG SEQESVKEFL AKAKEDFLKK WENPAQNTAH LDQFERIKTL GTGSFGRVML VKHMETGNHY AMKILDKQKV VKLKQIEHT LNEKRILQAV NFPFLVKLEF SFKDNSNLYM VMEYVPGGEM FSHLRRIGRF SEPHARFYAA QIVLTFEYLH S LDLIYRDL ...String: MGNAAAAKKG SEQESVKEFL AKAKEDFLKK WENPAQNTAH LDQFERIKTL GTGSFGRVML VKHMETGNHY AMKILDKQKV VKLKQIEHT LNEKRILQAV NFPFLVKLEF SFKDNSNLYM VMEYVPGGEM FSHLRRIGRF SEPHARFYAA QIVLTFEYLH S LDLIYRDL KPENLLIDQQ GYIQVTDFGF AKRVKGRTW(TPO) LCGTPEYLAP EIILSKGYNK AVDWWALGVL IYEMAAGY P PFFADQPIQI YEKIVSGKVR FPSHFSSDLK DLLRNLLQVD LTKRFGNLKN GVNDIKNHKW FATTDWIAIY QRKVEAPFI PKFKGPGDTS NFDDYEEEEI RVSINEKCGK EFSEF UniProtKB: cAMP-dependent protein kinase catalytic subunit alpha |
-Macromolecule #3: N-(2-phenylethyl)adenosine 5'-(tetrahydrogen triphosphate)
| Macromolecule | Name: N-(2-phenylethyl)adenosine 5'-(tetrahydrogen triphosphate) type: ligand / ID: 3 / Number of copies: 2 / Formula: B44 |
|---|---|
| Molecular weight | Theoretical: 611.33 Da |
| Chemical component information | ![]() ChemComp-B44: |
-Macromolecule #4: MAGNESIUM ION
| Macromolecule | Name: MAGNESIUM ION / type: ligand / ID: 4 / Number of copies: 4 / Formula: MG |
|---|---|
| Molecular weight | Theoretical: 24.305 Da |
-Macromolecule #5: PHOSPHOAMINOPHOSPHONIC ACID-ADENYLATE ESTER
| Macromolecule | Name: PHOSPHOAMINOPHOSPHONIC ACID-ADENYLATE ESTER / type: ligand / ID: 5 / Number of copies: 1 / Formula: ANP |
|---|---|
| Molecular weight | Theoretical: 506.196 Da |
| Chemical component information | ![]() ChemComp-ANP: |
-Experimental details
-Structure determination
| Method | cryo EM |
|---|---|
Processing | single particle reconstruction |
| Aggregation state | particle |
-
Sample preparation
| Concentration | 5 mg/mL |
|---|---|
| Buffer | pH: 7.4 |
| Vitrification | Cryogen name: ETHANE / Chamber humidity: 100 % / Instrument: FEI VITROBOT MARK IV |
-
Electron microscopy
| Microscope | TFS KRIOS |
|---|---|
| Image recording | Film or detector model: GATAN K3 (6k x 4k) / Average electron dose: 68.6 e/Å2 |
| Electron beam | Acceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN |
| Electron optics | Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Nominal defocus max: 1.8 µm / Nominal defocus min: 0.8 µm |
| Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
Movie
Controller
About Yorodumi




Keywords
Homo sapiens (human)
Authors
United States, 2 items
Citation
















Z (Sec.)
Y (Row.)
X (Col.)






































Processing
FIELD EMISSION GUN


