- EMDB-39957: Cryo-EM structure of the human ubiquitylated pre-40S ribosome wit... -
+
データを開く
IDまたはキーワード:
読み込み中...
-
基本情報
登録情報
データベース: EMDB / ID: EMD-39957
タイトル
Cryo-EM structure of the human ubiquitylated pre-40S ribosome with RIOK3
マップデータ
local_resolution filtered map
試料
複合体: ubiquitylated pre-40S ribosome with RIOK3
RNA: x 1種
タンパク質・ペプチド: x 36種
リガンド: x 1種
キーワード
ubiquitylation / ribosome / RIOK3
機能・相同性
機能・相同性情報
cellular response to dsDNA / negative regulation of MDA-5 signaling pathway / caspase binding / endonucleolytic cleavage of tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / negative regulation of endoplasmic reticulum unfolded protein response / oxidized pyrimidine DNA binding / response to TNF agonist / positive regulation of base-excision repair / positive regulation of respiratory burst involved in inflammatory response / positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage ...cellular response to dsDNA / negative regulation of MDA-5 signaling pathway / caspase binding / endonucleolytic cleavage of tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / negative regulation of endoplasmic reticulum unfolded protein response / oxidized pyrimidine DNA binding / response to TNF agonist / positive regulation of base-excision repair / positive regulation of respiratory burst involved in inflammatory response / positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage / positive regulation of gastrulation / regulation of adenylate cyclase-activating G protein-coupled receptor signaling pathway / protein tyrosine kinase inhibitor activity / IRE1-RACK1-PP2A complex / cellular response to dsRNA / positive regulation of endodeoxyribonuclease activity / nucleolus organization / positive regulation of Golgi to plasma membrane protein transport / positive regulation of innate immune response / TNFR1-mediated ceramide production / negative regulation of RNA splicing / negative regulation of DNA repair / supercoiled DNA binding / neural crest cell differentiation / positive regulation of ubiquitin-protein transferase activity / NF-kappaB complex / cysteine-type endopeptidase activator activity involved in apoptotic process / oxidized purine DNA binding / negative regulation of intrinsic apoptotic signaling pathway in response to hydrogen peroxide / U3 snoRNA binding / negative regulation of bicellular tight junction assembly / regulation of establishment of cell polarity / ubiquitin-like protein conjugating enzyme binding / negative regulation of phagocytosis / Formation of the ternary complex, and subsequently, the 43S complex / rRNA modification in the nucleus and cytosol / erythrocyte homeostasis / cytoplasmic side of rough endoplasmic reticulum membrane / laminin receptor activity / preribosome, small subunit precursor / negative regulation of ubiquitin protein ligase activity / ion channel inhibitor activity / protein kinase A binding / Ribosomal scanning and start codon recognition / pigmentation / Translation initiation complex formation / positive regulation of mitochondrial depolarization / positive regulation of T cell receptor signaling pathway / fibroblast growth factor binding / negative regulation of Wnt signaling pathway / positive regulation of activated T cell proliferation / monocyte chemotaxis / negative regulation of translational frameshifting / Protein hydroxylation / TOR signaling / BH3 domain binding / SARS-CoV-1 modulates host translation machinery / regulation of cell division / cellular response to ethanol / mTORC1-mediated signalling / iron-sulfur cluster binding / Peptide chain elongation / Selenocysteine synthesis / Formation of a pool of free 40S subunits / positive regulation of intrinsic apoptotic signaling pathway by p53 class mediator / endonucleolytic cleavage to generate mature 3'-end of SSU-rRNA from (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / ubiquitin ligase inhibitor activity / Eukaryotic Translation Termination / positive regulation of signal transduction by p53 class mediator / Response of EIF2AK4 (GCN2) to amino acid deficiency / SRP-dependent cotranslational protein targeting to membrane / negative regulation of ubiquitin-dependent protein catabolic process / protein serine/threonine kinase inhibitor activity / Viral mRNA Translation / negative regulation of respiratory burst involved in inflammatory response / Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) / GTP hydrolysis and joining of the 60S ribosomal subunit / L13a-mediated translational silencing of Ceruloplasmin expression / negative regulation of protein-containing complex assembly / Major pathway of rRNA processing in the nucleolus and cytosol / phagocytic cup / regulation of translational fidelity / endonucleolytic cleavage in ITS1 to separate SSU-rRNA from 5.8S rRNA and LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) / Protein methylation / spindle assembly / Nuclear events stimulated by ALK signaling in cancer / ribosomal small subunit export from nucleus / positive regulation of intrinsic apoptotic signaling pathway / laminin binding / rough endoplasmic reticulum / translation regulator activity / positive regulation of cell cycle / translation initiation factor binding / gastrulation / Amplification of signal from unattached kinetochores via a MAD2 inhibitory signal / negative regulation of protein binding / signaling adaptor activity / Maturation of protein E / Maturation of protein E 類似検索 - 分子機能
Serine/threonine-protein kinase Rio3 / : / Putative WW-binding domain and destruction box / Putative WW-binding domain and destruction box / Nin one binding (NOB1) Zn-ribbon-like / Ribonuclease Nob1, eukaryote / NOB1 zinc finger-like superfamily / Nin one binding (NOB1) Zn-ribbon like / Ribonuclease, PIN domain / RNA-binding protein NOB1 ...Serine/threonine-protein kinase Rio3 / : / Putative WW-binding domain and destruction box / Putative WW-binding domain and destruction box / Nin one binding (NOB1) Zn-ribbon-like / Ribonuclease Nob1, eukaryote / NOB1 zinc finger-like superfamily / Nin one binding (NOB1) Zn-ribbon like / Ribonuclease, PIN domain / RNA-binding protein NOB1 / PIN domain of ribonuclease / Low temperature viability protein Ltv1 / Low temperature viability protein / RIO kinase, conserved site / RIO1/ZK632.3/MJ0444 family signature. / Tsr1, G-like domain / RIO kinase / RIO-like kinase / : / RIO domain / : / : / Eukaryotic type KH-domain (KH-domain type I) (327.11.2) / Large family of predicted nucleotide-binding domains / Ribosome biogenesis protein BMS1/TSR1, C-terminal / AARP2CN / Bms1/Tsr1-type G domain / Ribosome biogenesis protein Bms1/Tsr1 / 40S ribosome biogenesis protein Tsr1 and BMS1 C-terminal / AARP2CN (NUC121) domain / Bms1-type guanine nucleotide-binding (G) domain profile. / AARP2CN (NUC121) domain / Protein of unknown function (DUF663) / PIN domain / K Homology domain, type 1 superfamily / 40S ribosomal protein SA / 40S ribosomal protein SA, C-terminal domain / 40S ribosomal protein SA C-terminus / Ribosomal protein S21e, conserved site / Ribosomal protein S21e signature. / : / Ribosomal protein S12e signature. / Ribosomal protein S12e / Ribosomal protein S19e, conserved site / Ribosomal protein S19e signature. / Ribosomal protein S5, eukaryotic/archaeal / Small (40S) ribosomal subunit Asc1/RACK1 / Ribosomal protein S21e / Ribosomal protein S21e superfamily / Ribosomal protein S21e / Ribosomal protein S2, eukaryotic / S27a-like superfamily / 40S Ribosomal protein S10 / : / Ribosomal protein S7e signature. / Plectin/S10, N-terminal / Plectin/S10 domain / Ribosomal protein S10, eukaryotic/archaeal / Ribosomal protein S8e subdomain, eukaryotes / Ribosomal protein S17e, conserved site / Ribosomal protein S17e signature. / Ribosomal protein S25 / S25 ribosomal protein / Ribosomal protein S27a / Ribosomal protein S27a / Ribosomal protein S27a / Ribosomal protein S3Ae, conserved site / Ribosomal protein S3Ae signature. / Ribosomal protein S2, eukaryotic/archaeal / Ribosomal protein S27e signature. / 40S ribosomal protein S29/30S ribosomal protein S14 type Z / Ribosomal protein S4e, N-terminal, conserved site / Ribosomal protein S4e signature. / 40S ribosomal protein S4, C-terminal domain / 40S ribosomal protein S4 C-terminus / Ribosomal protein S3, eukaryotic/archaeal / Ribosomal protein S19e / Ribosomal protein S8e, conserved site / Ribosomal protein S19e / Ribosomal protein S8e signature. / Ribosomal_S19e / Ribosomal protein S6, eukaryotic / Ribosomal protein S7e / Ribosomal protein S7e / 40S ribosomal protein S1/3, eukaryotes / Ribosomal protein S19A/S15e / 40S ribosomal protein S11, N-terminal / Ribosomal_S17 N-terminal / Ribosomal protein S17e / Ribosomal protein S17e-like superfamily / Ribosomal S17 / : / Ribosomal S24e conserved site / Ribosomal protein S24e signature. / Ribosomal protein S4e, N-terminal / RS4NT (NUC023) domain / Ribosomal protein S4, KOW domain / Ribosomal protein S4e / Ribosomal protein S4e, central region / Ribosomal protein S4e, central domain superfamily 類似検索 - ドメイン・相同性
Serine/threonine-protein kinase RIO3 / Small ribosomal subunit protein eS17 / Small ribosomal subunit protein uS2 / Small ribosomal subunit protein uS5 / Small ribosomal subunit protein uS3 / Small ribosomal subunit protein eS12 / Small ribosomal subunit protein eS19 / Small ribosomal subunit protein eS27 / Small ribosomal subunit protein uS4 / Small ribosomal subunit protein uS7 ...Serine/threonine-protein kinase RIO3 / Small ribosomal subunit protein eS17 / Small ribosomal subunit protein uS2 / Small ribosomal subunit protein uS5 / Small ribosomal subunit protein uS3 / Small ribosomal subunit protein eS12 / Small ribosomal subunit protein eS19 / Small ribosomal subunit protein eS27 / Small ribosomal subunit protein uS4 / Small ribosomal subunit protein uS7 / Small ribosomal subunit protein eS10 / Small ribosomal subunit protein uS10 / Small ribosomal subunit protein eS1 / Small ribosomal subunit protein eS7 / Small ribosomal subunit protein eS8 / Small ribosomal subunit protein uS8 / Small ribosomal subunit protein uS9 / Small ribosomal subunit protein uS11 / Small ribosomal subunit protein uS12 / Small ribosomal subunit protein uS13 / Small ribosomal subunit protein uS14 / Small ribosomal subunit protein uS15 / Small ribosomal subunit protein uS17 / Small ribosomal subunit protein eS4, X isoform / Small ribosomal subunit protein eS6 / Small ribosomal subunit protein uS19 / Small ribosomal subunit protein eS24 / Small ribosomal subunit protein eS25 / Small ribosomal subunit protein eS28 / Ubiquitin-ribosomal protein eS31 fusion protein / Small ribosomal subunit protein eS21 / Small ribosomal subunit protein RACK1 / Pre-rRNA-processing protein TSR1 homolog / Protein LTV1 homolog / RNA-binding protein PNO1 / RNA-binding protein NOB1 類似検索 - 構成要素
ジャーナル: Mol Cell / 年: 2025 タイトル: RIOK3 mediates the degradation of 40S ribosomes. 著者: Zixuan Huang / Frances F Diehl / Mengjiao Wang / Yi Li / Aixia Song / Fei Xavier Chen / Nicolle A Rosa-Mercado / Roland Beckmann / Rachel Green / Jingdong Cheng / 要旨: Cells tightly regulate ribosome homeostasis to adapt to changing environments. Ribosomes are degraded during stress, but the mechanisms responsible remain unclear. Here, we show that starvation ...Cells tightly regulate ribosome homeostasis to adapt to changing environments. Ribosomes are degraded during stress, but the mechanisms responsible remain unclear. Here, we show that starvation induces the selective depletion of 40S ribosomes following their ubiquitylation by the E3 ligase RNF10. The atypical kinase RIOK3 specifically recognizes these ubiquitylated 40S ribosomes through a unique ubiquitin-interacting motif, visualized by cryoelectron microscopy (cryo-EM). RIOK3 binding and ubiquitin recognition are essential for 40S ribosome degradation during starvation. RIOK3 induces the degradation of ubiquitylated 40S ribosomes through progressive decay of their 18S rRNA beginning at the 3' end, as revealed by cryo-EM structures of degradation intermediates. Together, these data define a pathway and mechanism for stress-induced degradation of 40S ribosomes, directly connecting ubiquitylation to regulation of ribosome homeostasis.