+
Open data
-
Basic information
Entry | ![]() | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | Dormant Ribosome with eEF2 and SERBP1 | |||||||||||||||
![]() | ||||||||||||||||
![]() |
| |||||||||||||||
![]() | Ribosome / eEF2 / E-tRNA | |||||||||||||||
Function / homology | ![]() Synthesis of diphthamide-EEF2 / translation at postsynapse / ribosome hibernation / translation elongation factor binding / PML body organization / SUMO binding / response to folic acid / translation at presynapse / exit from mitosis / male meiosis I ...Synthesis of diphthamide-EEF2 / translation at postsynapse / ribosome hibernation / translation elongation factor binding / PML body organization / SUMO binding / response to folic acid / translation at presynapse / exit from mitosis / male meiosis I / eukaryotic 80S initiation complex / negative regulation of protein neddylation / optic nerve development / response to insecticide / regulation of translation involved in cellular response to UV / negative regulation of endoplasmic reticulum unfolded protein response / oxidized pyrimidine DNA binding / response to TNF agonist / positive regulation of base-excision repair / axial mesoderm development / negative regulation of formation of translation preinitiation complex / regulation of G1 to G0 transition / ribosomal protein import into nucleus / positive regulation of respiratory burst involved in inflammatory response / positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage / positive regulation of cytoplasmic translation / positive regulation of gastrulation / 90S preribosome assembly / protein tyrosine kinase inhibitor activity / protein-DNA complex disassembly / IRE1-RACK1-PP2A complex / positive regulation of endodeoxyribonuclease activity / positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator / nucleolus organization / positive regulation of Golgi to plasma membrane protein transport / retinal ganglion cell axon guidance / TNFR1-mediated ceramide production / negative regulation of DNA repair / negative regulation of RNA splicing / GAIT complex / positive regulation of DNA damage response, signal transduction by p53 class mediator / positive regulation of intrinsic apoptotic signaling pathway by p53 class mediator / supercoiled DNA binding / TORC2 complex binding / alpha-beta T cell differentiation / neural crest cell differentiation / G1 to G0 transition / NF-kappaB complex / positive regulation of ubiquitin-protein transferase activity / cysteine-type endopeptidase activator activity involved in apoptotic process / oxidized purine DNA binding / aggresome / negative regulation of intrinsic apoptotic signaling pathway in response to hydrogen peroxide / ubiquitin-like protein conjugating enzyme binding / negative regulation of bicellular tight junction assembly / regulation of establishment of cell polarity / middle ear morphogenesis / negative regulation of phagocytosis / rRNA modification in the nucleus and cytosol / Formation of the ternary complex, and subsequently, the 43S complex / erythrocyte homeostasis / cytoplasmic side of rough endoplasmic reticulum membrane / laminin receptor activity / negative regulation of ubiquitin protein ligase activity / protein kinase A binding / ion channel inhibitor activity / pigmentation / Ribosomal scanning and start codon recognition / homeostatic process / lncRNA binding / Translation initiation complex formation / positive regulation of mitochondrial depolarization / Uptake and function of diphtheria toxin / positive regulation of T cell receptor signaling pathway / macrophage chemotaxis / fibroblast growth factor binding / negative regulation of Wnt signaling pathway / lung morphogenesis / monocyte chemotaxis / positive regulation of natural killer cell proliferation / positive regulation of activated T cell proliferation / negative regulation of translational frameshifting / Protein hydroxylation / TOR signaling / BH3 domain binding / SARS-CoV-1 modulates host translation machinery / regulation of cell division / cellular response to ethanol / mTORC1-mediated signalling / regulation of adenylate cyclase-activating G protein-coupled receptor signaling pathway / iron-sulfur cluster binding / Peptide chain elongation / skeletal muscle cell differentiation / Selenocysteine synthesis / Formation of a pool of free 40S subunits / endonucleolytic cleavage to generate mature 3'-end of SSU-rRNA from (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / Eukaryotic Translation Termination / ubiquitin ligase inhibitor activity / blastocyst development / positive regulation of GTPase activity Similarity search - Function | |||||||||||||||
Biological species | ![]() | |||||||||||||||
Method | single particle reconstruction / cryo EM / Resolution: 3.3 Å | |||||||||||||||
![]() | Du M / Zeng F | |||||||||||||||
Funding support | ![]()
| |||||||||||||||
![]() | ![]() Title: Implication of Stm1 in the protection of eIF5A, eEF2 and tRNA through dormant ribosomes. Authors: Mengtan Du / Xin Li / Wanlin Dong / Fuxing Zeng / ![]() Abstract: Dormant ribosomes are typically associated with preservation factors to protect themselves from degradation under stress conditions. Stm1/SERBP1 is one such protein that anchors the 40S and 60S ... Dormant ribosomes are typically associated with preservation factors to protect themselves from degradation under stress conditions. Stm1/SERBP1 is one such protein that anchors the 40S and 60S subunits together. Several proteins and tRNAs bind to this complex as well, yet the molecular mechanisms remain unclear. Here, we reported the cryo-EM structures of five newly identified Stm1/SERBP1-bound ribosomes. These structures highlighted that eIF5A, eEF2, and tRNA might bind to dormant ribosomes under stress to avoid their own degradation, thus facilitating protein synthesis upon the restoration of growth conditions. In addition, Ribo-seq data analysis reflected the upregulation of nutrient, metabolism, and external-stimulus-related pathways in the strain, suggesting possible regulatory roles of Stm1. The knowledge generated from the present work will facilitate in better understanding the molecular mechanism of dormant ribosomes. | |||||||||||||||
History |
|
-
Structure visualization
-
Downloads & links
-EMDB archive
Map data | ![]() | 61.7 MB | ![]() | |
---|---|---|---|---|
Header (meta data) | ![]() ![]() | 13.8 KB 13.8 KB | Display Display | ![]() |
FSC (resolution estimation) | ![]() | 15.8 KB | Display | ![]() |
Images | ![]() | 80.7 KB | ||
Filedesc metadata | ![]() | 4 KB | ||
Others | ![]() ![]() | 274.3 MB 274.1 MB | ||
Archive directory | ![]() ![]() | HTTPS FTP |
-Validation report
Summary document | ![]() | 971.5 KB | Display | ![]() |
---|---|---|---|---|
Full document | ![]() | 971 KB | Display | |
Data in XML | ![]() | 23.5 KB | Display | |
Data in CIF | ![]() | 31.2 KB | Display | |
Arichive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 8y0xMC ![]() 8y0uC ![]() 8y0wC C: citing same article ( M: atomic model generated by this map |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
EMDB pages | ![]() ![]() |
---|---|
Related items in Molecule of the Month |
-
Map
File | ![]() | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Voxel size | X=Y=Z: 1.08 Å | ||||||||||||||||||||
Density |
| ||||||||||||||||||||
Symmetry | Space group: 1 | ||||||||||||||||||||
Details | EMDB XML:
|
-Supplemental data
-
Sample components
-Entire : dormant ribosome
Entire | Name: dormant ribosome |
---|---|
Components |
|
-Supramolecule #1: dormant ribosome
Supramolecule | Name: dormant ribosome / type: complex / ID: 1 / Parent: 0 / Details: SERBP1 and eEF2 bound to dormant 80S ribosome |
---|---|
Source (natural) | Organism: ![]() |
-Experimental details
-Structure determination
Method | cryo EM |
---|---|
![]() | single particle reconstruction |
Aggregation state | particle |
-
Sample preparation
Buffer | pH: 7.4 Details: 50mM HEPES, pH 7.4, 100 mM KOAc, 5 mM Mg(OAc)2, 1mM DTT |
---|---|
Grid | Model: Quantifoil R1.2/1.3 / Material: COPPER / Mesh: 300 / Pretreatment - Type: GLOW DISCHARGE / Pretreatment - Time: 30 sec. / Pretreatment - Atmosphere: OTHER |
Vitrification | Cryogen name: ETHANE / Chamber humidity: 100 % / Chamber temperature: 277 K / Instrument: FEI VITROBOT MARK II |
-
Electron microscopy
Microscope | FEI TITAN KRIOS |
---|---|
Image recording | Film or detector model: GATAN K3 (6k x 4k) / Average electron dose: 30.0 e/Å2 |
Electron beam | Acceleration voltage: 300 kV / Electron source: ![]() |
Electron optics | Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Nominal defocus max: 2.5 µm / Nominal defocus min: 1.5 µm |
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |