thrombocyte differentiation / nucleate erythrocyte differentiation / PR-DUB complex / platelet morphogenesis / histone H2A deubiquitinase activity / positive regulation of retinoic acid receptor signaling pathway / lung saccule development / macrophage homeostasis / leukocyte proliferation / podocyte development ...thrombocyte differentiation / nucleate erythrocyte differentiation / PR-DUB complex / platelet morphogenesis / histone H2A deubiquitinase activity / positive regulation of retinoic acid receptor signaling pathway / lung saccule development / macrophage homeostasis / leukocyte proliferation / podocyte development / negative regulation of peroxisome proliferator activated receptor signaling pathway / myeloid cell apoptotic process / regulation of kidney size / neutrophil differentiation / hematopoietic stem cell homeostasis / common myeloid progenitor cell proliferation / monoubiquitinated protein deubiquitination / protein K48-linked deubiquitination / negative regulation of DNA recombination / tissue homeostasis / nuclear retinoic acid receptor binding / Apoptosis induced DNA fragmentation / peroxisome proliferator activated receptor binding / chromosome condensation / bone marrow development / symbiont entry into host cell via disruption of host cell glycocalyx / positive regulation of protein targeting to mitochondrion / nucleosomal DNA binding / Formation of Senescence-Associated Heterochromatin Foci (SAHF) / symbiont entry into host cell via disruption of host cell envelope / erythrocyte maturation / negative regulation of fat cell differentiation / virus tail / regulation of cytokine production involved in inflammatory response / hemopoiesis / homeostasis of number of cells / protein deubiquitination / response to retinoic acid / heart morphogenesis / negative regulation of megakaryocyte differentiation / protein localization to CENP-A containing chromatin / heterochromatin / Chromatin modifying enzymes / Replacement of protamines by nucleosomes in the male pronucleus / CENP-A containing nucleosome / Packaging Of Telomere Ends / Recognition and association of DNA glycosylase with site containing an affected purine / Cleavage of the damaged purine / Deposition of new CENPA-containing nucleosomes at the centromere / Recognition and association of DNA glycosylase with site containing an affected pyrimidine / Cleavage of the damaged pyrimidine / telomere organization / Interleukin-7 signaling / Inhibition of DNA recombination at telomere / RNA Polymerase I Promoter Opening / Meiotic synapsis / Assembly of the ORC complex at the origin of replication / SUMOylation of chromatin organization proteins / Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex / DNA methylation / Condensation of Prophase Chromosomes / Chromatin modifications during the maternal to zygotic transition (MZT) / epigenetic regulation of gene expression / HCMV Late Events / SIRT1 negatively regulates rRNA expression / thymus development / ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression / animal organ morphogenesis / PRC2 methylates histones and DNA / innate immune response in mucosa / Regulation of endogenous retroelements by KRAB-ZFP proteins / Defective pyroptosis / HDMs demethylate histones / Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) / HDACs deacetylate histones / RNA Polymerase I Promoter Escape / Nonhomologous End-Joining (NHEJ) / regulation of cell growth / Transcriptional regulation by small RNAs / chromatin DNA binding / Formation of the beta-catenin:TCF transactivating complex / RUNX1 regulates genes involved in megakaryocyte differentiation and platelet function / Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3 / euchromatin / G2/M DNA damage checkpoint / Metalloprotease DUBs / NoRC negatively regulates rRNA expression / protein modification process / cell morphogenesis / DNA Damage/Telomere Stress Induced Senescence / B-WICH complex positively regulates rRNA expression / PKMTs methylate histone lysines / Meiotic recombination / Pre-NOTCH Transcription and Translation / RMTs methylate histone arginines / Activation of anterior HOX genes in hindbrain development during early embryogenesis / histone deacetylase binding / Transcriptional regulation of granulopoiesis / neuron cellular homeostasis / UCH proteinases Similarity search - Function
National Natural Science Foundation of China (NSFC)
31991162
China
National Natural Science Foundation of China (NSFC)
918532204
China
National Natural Science Foundation of China (NSFC)
92153302
China
Citation
Journal: Nature / Year: 2023 Title: Basis of the H2AK119 specificity of the Polycomb repressive deubiquitinase. Authors: Weiran Ge / Cong Yu / Jingjing Li / Zhenyu Yu / Xiaorong Li / Yan Zhang / Chao-Pei Liu / Yingfeng Li / Changlin Tian / Xinzheng Zhang / Guohong Li / Bing Zhu / Rui-Ming Xu / Abstract: Repression of gene expression by protein complexes of the Polycomb group is a fundamental mechanism that governs embryonic development and cell-type specification. The Polycomb repressive ...Repression of gene expression by protein complexes of the Polycomb group is a fundamental mechanism that governs embryonic development and cell-type specification. The Polycomb repressive deubiquitinase (PR-DUB) complex removes the ubiquitin moiety from monoubiquitinated histone H2A K119 (H2AK119ub1) on the nucleosome, counteracting the ubiquitin E3 ligase activity of Polycomb repressive complex 1 (PRC1) to facilitate the correct silencing of genes by Polycomb proteins and safeguard active genes from inadvertent silencing by PRC1 (refs. ). The intricate biological function of PR-DUB requires accurate targeting of H2AK119ub1, but PR-DUB can deubiquitinate monoubiquitinated free histones and peptide substrates indiscriminately; the basis for its exquisite nucleosome-dependent substrate specificity therefore remains unclear. Here we report the cryo-electron microscopy structure of human PR-DUB, composed of BAP1 and ASXL1, in complex with the chromatosome. We find that ASXL1 directs the binding of the positively charged C-terminal extension of BAP1 to nucleosomal DNA and histones H3-H4 near the dyad, an addition to its role in forming the ubiquitin-binding cleft. Furthermore, a conserved loop segment of the catalytic domain of BAP1 is situated near the H2A-H2B acidic patch. This distinct nucleosome-binding mode displaces the C-terminal tail of H2A from the nucleosome surface, and endows PR-DUB with the specificity for H2AK119ub1.
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi