+
Open data
-
Basic information
Entry | ![]() | |||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | Cryo-EM structure of the nucleosome in complex with p53 | |||||||||||||||||||||||||||||||||
![]() | Cryo-EM structure of the nucleosome in complex with p53 | |||||||||||||||||||||||||||||||||
![]() |
| |||||||||||||||||||||||||||||||||
![]() | Transcription factor / Tumor-suppressor / GENE REGULATION-DNA COMPLEX | |||||||||||||||||||||||||||||||||
Function / homology | ![]() Loss of function of TP53 in cancer due to loss of tetramerization ability / Regulation of TP53 Expression / negative regulation of helicase activity / signal transduction by p53 class mediator / negative regulation of G1 to G0 transition / negative regulation of glucose catabolic process to lactate via pyruvate / Transcriptional activation of cell cycle inhibitor p21 / regulation of intrinsic apoptotic signaling pathway by p53 class mediator / negative regulation of pentose-phosphate shunt / ATP-dependent DNA/DNA annealing activity ...Loss of function of TP53 in cancer due to loss of tetramerization ability / Regulation of TP53 Expression / negative regulation of helicase activity / signal transduction by p53 class mediator / negative regulation of G1 to G0 transition / negative regulation of glucose catabolic process to lactate via pyruvate / Transcriptional activation of cell cycle inhibitor p21 / regulation of intrinsic apoptotic signaling pathway by p53 class mediator / negative regulation of pentose-phosphate shunt / ATP-dependent DNA/DNA annealing activity / Activation of NOXA and translocation to mitochondria / regulation of cell cycle G2/M phase transition / regulation of fibroblast apoptotic process / intrinsic apoptotic signaling pathway in response to hypoxia / oligodendrocyte apoptotic process / negative regulation of miRNA processing / positive regulation of thymocyte apoptotic process / oxidative stress-induced premature senescence / regulation of tissue remodeling / glucose catabolic process to lactate via pyruvate / positive regulation of mitochondrial membrane permeability / positive regulation of programmed necrotic cell death / mRNA transcription / bone marrow development / circadian behavior / regulation of mitochondrial membrane permeability involved in apoptotic process / germ cell nucleus / RUNX3 regulates CDKN1A transcription / TP53 regulates transcription of additional cell cycle genes whose exact role in the p53 pathway remain uncertain / TP53 Regulates Transcription of Death Receptors and Ligands / Activation of PUMA and translocation to mitochondria / regulation of DNA damage response, signal transduction by p53 class mediator / histone deacetylase regulator activity / negative regulation of glial cell proliferation / Regulation of TP53 Activity through Association with Co-factors / negative regulation of neuroblast proliferation / T cell lineage commitment / mitochondrial DNA repair / Formation of Senescence-Associated Heterochromatin Foci (SAHF) / ER overload response / B cell lineage commitment / thymocyte apoptotic process / TP53 Regulates Transcription of Caspase Activators and Caspases / negative regulation of mitophagy / cardiac septum morphogenesis / negative regulation of DNA replication / entrainment of circadian clock by photoperiod / PI5P Regulates TP53 Acetylation / negative regulation of telomere maintenance via telomerase / Zygotic genome activation (ZGA) / positive regulation of release of cytochrome c from mitochondria / Association of TriC/CCT with target proteins during biosynthesis / necroptotic process / TP53 Regulates Transcription of Genes Involved in Cytochrome C Release / rRNA transcription / TFIID-class transcription factor complex binding / SUMOylation of transcription factors / TP53 regulates transcription of several additional cell death genes whose specific roles in p53-dependent apoptosis remain uncertain / intrinsic apoptotic signaling pathway by p53 class mediator / T cell proliferation involved in immune response / negative regulation of reactive oxygen species metabolic process / positive regulation of execution phase of apoptosis / Transcriptional Regulation by VENTX / replicative senescence / cellular response to UV-C / general transcription initiation factor binding / intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress / cellular response to actinomycin D / neuroblast proliferation / positive regulation of RNA polymerase II transcription preinitiation complex assembly / negative regulation of tumor necrosis factor-mediated signaling pathway / intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator / response to X-ray / type II interferon-mediated signaling pathway / hematopoietic stem cell differentiation / Pyroptosis / chromosome organization / viral process / embryonic organ development / somitogenesis / TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest / glial cell proliferation / negative regulation of megakaryocyte differentiation / hematopoietic progenitor cell differentiation / protein localization to CENP-A containing chromatin / core promoter sequence-specific DNA binding / Chromatin modifying enzymes / Replacement of protamines by nucleosomes in the male pronucleus / negative regulation of stem cell proliferation / CENP-A containing nucleosome / cellular response to glucose starvation / cis-regulatory region sequence-specific DNA binding / mitophagy / negative regulation of fibroblast proliferation / Packaging Of Telomere Ends / positive regulation of cardiac muscle cell apoptotic process / positive regulation of intrinsic apoptotic signaling pathway / tumor necrosis factor-mediated signaling pathway / negative regulation of proteolysis / Recognition and association of DNA glycosylase with site containing an affected purine Similarity search - Function | |||||||||||||||||||||||||||||||||
Biological species | ![]() | |||||||||||||||||||||||||||||||||
Method | single particle reconstruction / cryo EM / Resolution: 4.07 Å | |||||||||||||||||||||||||||||||||
![]() | Nishimura M / Nozawa K / Takizawa Y / Kurumizaka H | |||||||||||||||||||||||||||||||||
Funding support | ![]()
| |||||||||||||||||||||||||||||||||
![]() | ![]() Title: Structural basis for p53 binding to its nucleosomal target DNA sequence. Authors: Masahiro Nishimura / Yoshimasa Takizawa / Kayo Nozawa / Hitoshi Kurumizaka / ![]() Abstract: The tumor suppressor p53 functions as a pioneer transcription factor that binds a nucleosomal target DNA sequence. However, the mechanism by which p53 binds to its target DNA in the nucleosome ...The tumor suppressor p53 functions as a pioneer transcription factor that binds a nucleosomal target DNA sequence. However, the mechanism by which p53 binds to its target DNA in the nucleosome remains elusive. Here we report the cryo-electron microscopy structures of the p53 DNA-binding domain and the full-length p53 protein complexed with a nucleosome containing the 20 base-pair target DNA sequence of p53 (p53BS). In the p53-nucleosome structures, the p53 DNA-binding domain forms a tetramer and specifically binds to the p53BS DNA, located near the entry/exit region of the nucleosome. The nucleosomal position of the p53BS DNA is within the genomic p21 promoter region. The p53 binding peels the DNA from the histone surface, and drastically changes the DNA path around the p53BS on the nucleosome. The C-terminal domain of p53 also binds to the DNA around the center and linker DNA regions of the nucleosome, as revealed by hydroxyl radical footprinting. These results provide important structural information for understanding the mechanism by which p53 binds the nucleosome and changes the chromatin structure for gene activation. | |||||||||||||||||||||||||||||||||
History |
|
-
Structure visualization
Supplemental images |
---|
-
Downloads & links
-EMDB archive
Map data | ![]() | 5.9 MB | ![]() | |
---|---|---|---|---|
Header (meta data) | ![]() ![]() | 26.7 KB 26.7 KB | Display Display | ![]() |
FSC (resolution estimation) | ![]() | 10 KB | Display | ![]() |
Images | ![]() | 63.6 KB | ||
Filedesc metadata | ![]() | 6.9 KB | ||
Others | ![]() ![]() | 65.3 MB 65.3 MB | ||
Archive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 7xzzMC ![]() 7xzxC ![]() 7xzyC ![]() 7y00C M: atomic model generated by this map C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
EMDB pages | ![]() ![]() |
---|---|
Related items in Molecule of the Month |
-
Map
File | ![]() | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | Cryo-EM structure of the nucleosome in complex with p53 | ||||||||||||||||||||||||||||||||||||
Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||
Voxel size | X=Y=Z: 1.06 Å | ||||||||||||||||||||||||||||||||||||
Density |
| ||||||||||||||||||||||||||||||||||||
Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||
Details | EMDB XML:
|
-Supplemental data
-Half map: #1
File | emd_33535_half_map_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-Half map: #2
File | emd_33535_half_map_2.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-
Sample components
+Entire : Cryo-EM structure of the nucleosome in complex with p53
+Supramolecule #1: Cryo-EM structure of the nucleosome in complex with p53
+Supramolecule #2: nucleosome, p53
+Supramolecule #3: DNA
+Macromolecule #1: Histone H3.1
+Macromolecule #2: Histone H4
+Macromolecule #3: Histone H2A type 1-B/E
+Macromolecule #4: Histone H2B type 1-J
+Macromolecule #7: Cellular tumor antigen p53
+Macromolecule #5: DNA (169-MER)
+Macromolecule #6: DNA (169-MER)
-Experimental details
-Structure determination
Method | cryo EM |
---|---|
![]() | single particle reconstruction |
Aggregation state | particle |
-
Sample preparation
Concentration | 0.25 mg/mL | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Buffer | pH: 8 Component:
| |||||||||
Vitrification | Cryogen name: ETHANE / Chamber humidity: 100 % / Chamber temperature: 289.15 K / Instrument: FEI VITROBOT MARK IV |
-
Electron microscopy
Microscope | FEI TITAN KRIOS |
---|---|
Image recording | Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k) / Average electron dose: 60.0 e/Å2 |
Electron beam | Acceleration voltage: 300 kV / Electron source: ![]() |
Electron optics | Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Nominal defocus max: 2.5 µm / Nominal defocus min: 1.0 µm |
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |