'de novo' cotranslational protein folding / stress response to copper ion / peptide deformylase / peptide deformylase activity / co-translational protein modification / stringent response / ornithine decarboxylase inhibitor activity / transcription antitermination factor activity, RNA binding / misfolded RNA binding / Group I intron splicing ...'de novo' cotranslational protein folding / stress response to copper ion / peptide deformylase / peptide deformylase activity / co-translational protein modification / stringent response / ornithine decarboxylase inhibitor activity / transcription antitermination factor activity, RNA binding / misfolded RNA binding / Group I intron splicing / RNA folding / protein unfolding / transcriptional attenuation / positive regulation of ribosome biogenesis / endoribonuclease inhibitor activity / RNA-binding transcription regulator activity / translational termination / negative regulation of cytoplasmic translation / four-way junction DNA binding / DnaA-L2 complex / : / translation repressor activity / negative regulation of translational initiation / regulation of mRNA stability / negative regulation of DNA-templated DNA replication initiation / protein folding chaperone / mRNA regulatory element binding translation repressor activity / assembly of large subunit precursor of preribosome / positive regulation of RNA splicing / ribosome assembly / peptidyl-prolyl cis-trans isomerase activity / transcription elongation factor complex / regulation of DNA-templated transcription elongation / cytosolic ribosome assembly / response to reactive oxygen species / DNA endonuclease activity / transcription antitermination / RNA polymerase II CTD heptapeptide repeat P3 isomerase activity / RNA polymerase II CTD heptapeptide repeat P6 isomerase activity / peptidylprolyl isomerase / regulation of cell growth / DNA-templated transcription termination / response to radiation / ferrous iron binding / maintenance of translational fidelity / mRNA 5'-UTR binding / protein transport / regulation of translation / ribosome biogenesis / large ribosomal subunit / transferase activity / ribosome binding / ribosomal small subunit biogenesis / ribosomal small subunit assembly / response to heat / small ribosomal subunit / 5S rRNA binding / ribosomal large subunit assembly / cytosolic small ribosomal subunit / large ribosomal subunit rRNA binding / small ribosomal subunit rRNA binding / cytosolic large ribosomal subunit / cytoplasmic translation / tRNA binding / hydrolase activity / negative regulation of translation / rRNA binding / ribosome / structural constituent of ribosome / translation / cell division / response to antibiotic / negative regulation of DNA-templated transcription / mRNA binding / DNA binding / RNA binding / zinc ion binding / identical protein binding / membrane / cytosol / cytoplasm 類似検索 - 分子機能
Trigger factor / Trigger factor, C-terminal / Trigger factor, ribosome-binding, bacterial / Trigger factor ribosome-binding domain superfamily / Bacterial trigger factor protein (TF) / Bacterial trigger factor protein (TF) C-terminus / Trigger factor, C-terminal domain superfamily / Trigger factor/SurA domain superfamily / Peptide deformylase / Peptide deformylase superfamily ...Trigger factor / Trigger factor, C-terminal / Trigger factor, ribosome-binding, bacterial / Trigger factor ribosome-binding domain superfamily / Bacterial trigger factor protein (TF) / Bacterial trigger factor protein (TF) C-terminus / Trigger factor, C-terminal domain superfamily / Trigger factor/SurA domain superfamily / Peptide deformylase / Peptide deformylase superfamily / Polypeptide deformylase / FKBP-type peptidyl-prolyl cis-trans isomerase domain profile. / FKBP-type peptidyl-prolyl cis-trans isomerase / FKBP-type peptidyl-prolyl cis-trans isomerase domain / Peptidyl-prolyl cis-trans isomerase domain superfamily / Ribosomal protein S21, conserved site / Ribosomal protein S21 signature. / Ribosomal protein L11, bacterial-type / Ribosomal protein L25, short-form / Ribosomal protein S14, bacterial/plastid / Ribosomal protein S21 superfamily / Ribosomal protein S16, conserved site / Ribosomal protein S16 signature. / Ribosomal protein S21 / Ribosomal protein S21 / Ribosomal protein L11, conserved site / Ribosomal protein L11 signature. / : / Ribosomal protein L16 signature 1. / Ribosomal protein L21, conserved site / Ribosomal protein L21 signature. / Ribosomal protein L16 signature 2. / Ribosomal protein L16, conserved site / Ribosomal protein L6, conserved site / Ribosomal protein L6 signature 1. / : / Ribosomal protein L9 signature. / Ribosomal protein L9, bacteria/chloroplast / Ribosomal protein L9, C-terminal / Ribosomal protein L9, C-terminal domain / Ribosomal protein L9, C-terminal domain superfamily / Ribosomal protein L11, N-terminal / Ribosomal protein L11, N-terminal domain / Ribosomal protein L17 signature. / Ribosomal protein L11/L12 / Ribosomal protein L11, C-terminal / Ribosomal protein L11, C-terminal domain superfamily / Ribosomal protein L11/L12, N-terminal domain superfamily / Ribosomal protein L11/L12 / Ribosomal protein L11, RNA binding domain / Ribosomal L25p family / Ribosomal protein L25 / Ribosomal protein L36 signature. / Ribosomal protein L32p, bacterial type / Ribosomal protein L28/L24 superfamily / Ribosomal protein L25/Gln-tRNA synthetase, N-terminal / Ribosomal protein L25/Gln-tRNA synthetase, anti-codon-binding domain superfamily / Ribosomal protein L9, N-terminal domain superfamily / Ribosomal protein L9 / Ribosomal protein L9, N-terminal / Ribosomal protein L9, N-terminal domain / Ribosomal protein L33, conserved site / Ribosomal protein L33 signature. / Ribosomal protein L35, conserved site / Ribosomal protein L35 signature. / Ribosomal protein L28 / Ribosomal protein L35, non-mitochondrial / : / Ribosomal protein L5, bacterial-type / Ribosomal protein L18, bacterial-type / : / Ribosomal protein S19, bacterial-type / Ribosomal protein S3, bacterial-type / Ribosomal protein L6, bacterial-type / Ribosomal protein S13, bacterial-type / Ribosomal protein S6, conserved site / Ribosomal protein S6 signature. / Ribosomal protein S7, bacterial/organellar-type / Ribosomal protein L9/RNase H1, N-terminal / Ribosomal protein S9, bacterial/plastid / Ribosomal protein S11, bacterial-type / Ribosomal protein S20 / Ribosomal protein S20 superfamily / Ribosomal protein S20 / Ribosomal protein L36 / Ribosomal protein S4, bacterial-type / Ribosomal protein L36 superfamily / Ribosomal protein L36 / 30S ribosomal protein S17 / Ribosomal protein S5, bacterial-type / Ribosomal protein L19, conserved site / Ribosomal protein L19 signature. / Ribosomal protein L27, conserved site / Ribosomal protein L27 signature. / Ribosomal protein L20 signature. / Ribosomal protein L22, bacterial/chloroplast-type / Ribosomal protein L14P, bacterial-type / Ribosomal protein L34, conserved site / Ribosomal protein L34 signature. / Ribosomal protein S2, bacteria/mitochondria/plastid 類似検索 - ドメイン・相同性
Small ribosomal subunit protein bS6 / Small ribosomal subunit protein uS7 / Large ribosomal subunit protein uL15 / Peptide deformylase / Large ribosomal subunit protein uL11 / Large ribosomal subunit protein bL19 / Large ribosomal subunit protein bL20 / Large ribosomal subunit protein bL27 / Large ribosomal subunit protein bL28 / Large ribosomal subunit protein uL29 ...Small ribosomal subunit protein bS6 / Small ribosomal subunit protein uS7 / Large ribosomal subunit protein uL15 / Peptide deformylase / Large ribosomal subunit protein uL11 / Large ribosomal subunit protein bL19 / Large ribosomal subunit protein bL20 / Large ribosomal subunit protein bL27 / Large ribosomal subunit protein bL28 / Large ribosomal subunit protein uL29 / Large ribosomal subunit protein bL32 / Large ribosomal subunit protein bL33 / Large ribosomal subunit protein bL34 / Large ribosomal subunit protein bL35 / Large ribosomal subunit protein bL36A / Large ribosomal subunit protein bL9 / Small ribosomal subunit protein uS10 / Small ribosomal subunit protein uS11 / Small ribosomal subunit protein uS12 / Small ribosomal subunit protein uS13 / Small ribosomal subunit protein bS16 / Small ribosomal subunit protein bS18 / Small ribosomal subunit protein uS19 / Small ribosomal subunit protein bS20 / Small ribosomal subunit protein uS2 / Small ribosomal subunit protein uS3 / Small ribosomal subunit protein uS4 / Small ribosomal subunit protein uS5 / Small ribosomal subunit protein uS8 / Small ribosomal subunit protein uS9 / Trigger factor / Large ribosomal subunit protein uL13 / Large ribosomal subunit protein uL14 / Large ribosomal subunit protein uL16 / Large ribosomal subunit protein uL23 / Small ribosomal subunit protein uS15 / Large ribosomal subunit protein bL17 / Large ribosomal subunit protein bL21 / Large ribosomal subunit protein uL30 / Large ribosomal subunit protein uL6 / Small ribosomal subunit protein uS14 / Small ribosomal subunit protein uS17 / Large ribosomal subunit protein uL18 / Large ribosomal subunit protein uL2 / Large ribosomal subunit protein uL3 / Large ribosomal subunit protein uL24 / Large ribosomal subunit protein uL4 / Large ribosomal subunit protein uL22 / Large ribosomal subunit protein uL5 / Small ribosomal subunit protein bS21 / Large ribosomal subunit protein bL25 類似検索 - 構成要素
Council of Scientific & Industrial Research (CSIR)
インド
引用
ジャーナル: Structure / 年: 2021 タイトル: Structural insights into the interplay of protein biogenesis factors with the 70S ribosome. 著者: Shirin Akbar / Sayan Bhakta / Jayati Sengupta / 要旨: Bacterial co-translational N-terminal methionine excision, an early event of nascent polypeptide chain processing, is mediated by two enzymes: peptide deformylase (PDF) and methionine aminopeptidase ...Bacterial co-translational N-terminal methionine excision, an early event of nascent polypeptide chain processing, is mediated by two enzymes: peptide deformylase (PDF) and methionine aminopeptidase (MetAP). Trigger factor (TF), the only ribosome-associated bacterial chaperone, offers co-translational chaperoning assistance. Here, we present two high-resolution cryoelectron microscopy structures of tRNA-bound E. coli ribosome complexes showing simultaneous binding of PDF and TF, in the absence (3.4 Å) and presence of MetAP (4.1 Å). These structures establish molecular details of the interactions of the factors with the ribosome, and thereby reveal the structural basis of nascent chain processing. Our results suggest that simultaneous binding of all three factors is not a functionally favorable mechanism of nascent chain processing. Strikingly, an unusual structural distortion of the 70S ribosome, potentially driven by binding of multiple copies of MetAP, is observed when MetAP is incubated with a pre-formed PDF-TF-bound ribosome complex.