Protein degradation / AAA+ protease complex / CHAPERONE
機能・相同性
機能・相同性情報
protein denaturation / HslUV protease complex / endopeptidase Clp / endopeptidase Clp complex / positive regulation of programmed cell death / response to temperature stimulus / ATP-dependent peptidase activity / protein quality control for misfolded or incompletely synthesized proteins / protein unfolding / proteasomal protein catabolic process ...protein denaturation / HslUV protease complex / endopeptidase Clp / endopeptidase Clp complex / positive regulation of programmed cell death / response to temperature stimulus / ATP-dependent peptidase activity / protein quality control for misfolded or incompletely synthesized proteins / protein unfolding / proteasomal protein catabolic process / serine-type peptidase activity / proteolysis involved in protein catabolic process / bioluminescence / generation of precursor metabolites and energy / ATP-dependent protein folding chaperone / response to radiation / disordered domain specific binding / unfolded protein binding / ATPase binding / response to heat / protease binding / protein dimerization activity / cell division / serine-type endopeptidase activity / ATP hydrolysis activity / proteolysis / zinc ion binding / ATP binding / identical protein binding / membrane / cytosol 類似検索 - 分子機能
Zinc finger, ClpX C4-type superfamily / ClpX C4-type zinc finger / Clp protease, ATP-binding subunit ClpX / Zinc finger, ClpX C4-type / Clp protease, ATP-binding subunit ClpX, bacteria / ClpX zinc binding (ZB) domain profile. / ClpX C4-type zinc finger / : / ClpP, Ser active site / Endopeptidase Clp serine active site. ...Zinc finger, ClpX C4-type superfamily / ClpX C4-type zinc finger / Clp protease, ATP-binding subunit ClpX / Zinc finger, ClpX C4-type / Clp protease, ATP-binding subunit ClpX, bacteria / ClpX zinc binding (ZB) domain profile. / ClpX C4-type zinc finger / : / ClpP, Ser active site / Endopeptidase Clp serine active site. / ClpP, histidine active site / Endopeptidase Clp histidine active site. / ATP-dependent Clp protease proteolytic subunit / Clp protease proteolytic subunit /Translocation-enhancing protein TepA / Clp protease / Clp ATPase, C-terminal / AAA domain (Cdc48 subfamily) / C-terminal, D2-small domain, of ClpB protein / C-terminal, D2-small domain, of ClpB protein / ClpP/crotonase-like domain superfamily / Green fluorescent protein, GFP / Green fluorescent protein-related / Green fluorescent protein / Green fluorescent protein / ATPase, AAA-type, core / ATPases associated with a variety of cellular activities / AAA+ ATPase domain / P-loop containing nucleoside triphosphate hydrolase 類似検索 - ドメイン・相同性
ATP-dependent Clp protease proteolytic subunit / ATP-dependent Clp protease ATP-binding subunit ClpX / Green fluorescent protein 類似検索 - 構成要素
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)
GM-101988
米国
引用
ジャーナル: Elife / 年: 2020 タイトル: Structural basis of ClpXP recognition and unfolding of ssrA-tagged substrates. 著者: Xue Fei / Tristan A Bell / Sarah R Barkow / Tania A Baker / Robert T Sauer / 要旨: When ribosomes fail to complete normal translation, all cells have mechanisms to ensure degradation of the resulting partial proteins to safeguard proteome integrity. In and other eubacteria, the ...When ribosomes fail to complete normal translation, all cells have mechanisms to ensure degradation of the resulting partial proteins to safeguard proteome integrity. In and other eubacteria, the tmRNA system rescues stalled ribosomes and adds an ssrA tag or degron to the C-terminus of the incomplete protein, which directs degradation by the AAA+ ClpXP protease. Here, we present cryo-EM structures of ClpXP bound to the ssrA degron. C-terminal residues of the ssrA degron initially bind in the top of an otherwise closed ClpX axial channel and subsequently move deeper into an open channel. For short-degron protein substrates, we show that unfolding can occur directly from the initial closed-channel complex. For longer degron substrates, our studies illuminate how ClpXP transitions from specific recognition into a nonspecific unfolding and translocation machine. Many AAA+ proteases and protein-remodeling motors are likely to employ similar multistep recognition and engagement strategies.