- EMDB-11673: Cryo-EM structure of human apo RNA Polymerase III -
+
Open data
ID or keywords:
Loading...
-
Basic information
Entry
Database: EMDB / ID: EMD-11673
Title
Cryo-EM structure of human apo RNA Polymerase III
Map data
Cryo-EM map of apo human RNA polymerase III, Map A, unsharpened
Sample
Complex: Cryo-EM structure of human apo RNA Polymerase III
Protein or peptide: x 17 types
Ligand: x 3 types
Keywords
Human RNA polymerase III / Synthesis of short RNAs / apo complex / TRANSCRIPTION
Function / homology
Function and homology information
snRNA transcription by RNA polymerase III / RNA Polymerase III Chain Elongation / RNA Polymerase III Transcription Termination / calcitonin gene-related peptide receptor activity / DNA/RNA hybrid binding / regulation of transcription by RNA polymerase I / regulation of transcription by RNA polymerase III / RPAP3/R2TP/prefoldin-like complex / DNA polymerase III complex / RNA Polymerase III Transcription Initiation From Type 1 Promoter ...snRNA transcription by RNA polymerase III / RNA Polymerase III Chain Elongation / RNA Polymerase III Transcription Termination / calcitonin gene-related peptide receptor activity / DNA/RNA hybrid binding / regulation of transcription by RNA polymerase I / regulation of transcription by RNA polymerase III / RPAP3/R2TP/prefoldin-like complex / DNA polymerase III complex / RNA Polymerase III Transcription Initiation From Type 1 Promoter / RNA Polymerase III Transcription Initiation From Type 2 Promoter / RNA Polymerase III Transcription Initiation From Type 3 Promoter / Cytosolic sensors of pathogen-associated DNA / RNA Polymerase III Abortive And Retractive Initiation / positive regulation of innate immune response / nucleobase-containing compound metabolic process / Abortive elongation of HIV-1 transcript in the absence of Tat / FGFR2 alternative splicing / RNA Polymerase I Transcription Termination / MicroRNA (miRNA) biogenesis / Viral Messenger RNA Synthesis / Signaling by FGFR2 IIIa TM / RNA Pol II CTD phosphorylation and interaction with CE during HIV infection / RNA Pol II CTD phosphorylation and interaction with CE / Formation of the Early Elongation Complex / Formation of the HIV-1 Early Elongation Complex / mRNA Capping / HIV Transcription Initiation / RNA Polymerase II HIV Promoter Escape / Transcription of the HIV genome / RNA Polymerase II Promoter Escape / RNA Polymerase II Transcription Pre-Initiation And Promoter Opening / RNA Polymerase II Transcription Initiation / RNA Polymerase II Transcription Initiation And Promoter Clearance / transcription initiation at RNA polymerase III promoter / mRNA Splicing - Minor Pathway / PIWI-interacting RNA (piRNA) biogenesis / RNA Polymerase I Transcription Initiation / Pausing and recovery of Tat-mediated HIV elongation / Tat-mediated HIV elongation arrest and recovery / Processing of Capped Intron-Containing Pre-mRNA / RNA polymerase II transcribes snRNA genes / HIV elongation arrest and recovery / Pausing and recovery of HIV elongation / neuropeptide signaling pathway / Tat-mediated elongation of the HIV-1 transcript / Formation of HIV-1 elongation complex containing HIV-1 Tat / transcription by RNA polymerase III / transcription by RNA polymerase I / RNA polymerase I complex / transcription elongation by RNA polymerase I / Formation of HIV elongation complex in the absence of HIV Tat / RNA polymerase III complex / RNA polymerase II, core complex / tRNA transcription by RNA polymerase III / RNA Polymerase II Transcription Elongation / : / Formation of RNA Pol II elongation complex / RNA Polymerase II Pre-transcription Events / DNA-directed RNA polymerase activity / Inhibition of DNA recombination at telomere / mRNA Splicing - Major Pathway / positive regulation of interferon-beta production / acrosomal vesicle / TP53 Regulates Transcription of DNA Repair Genes / RNA Polymerase I Promoter Escape / Transcriptional regulation by small RNAs / protein-DNA complex / NoRC negatively regulates rRNA expression / B-WICH complex positively regulates rRNA expression / Transcription-Coupled Nucleotide Excision Repair (TC-NER) / ribonucleoside binding / Formation of TC-NER Pre-Incision Complex / Activation of anterior HOX genes in hindbrain development during early embryogenesis / : / : / : / fibrillar center / : / : / : / DNA-directed RNA polymerase / Dual incision in TC-NER / Gap-filling DNA repair synthesis and ligation in TC-NER / single-stranded DNA binding / 4 iron, 4 sulfur cluster binding / double-stranded DNA binding / defense response to virus / Estrogen-dependent gene expression / transcription by RNA polymerase II / nucleic acid binding / cell population proliferation / protein dimerization activity / protein stabilization / nuclear body / innate immune response / nucleotide binding / intracellular membrane-bounded organelle / DNA-templated transcription / centrosome Similarity search - Function
DNA-directed RNA polymerase III subunit RPC1 / DNA-directed RNA polymerases I and III subunit RPAC1 / DNA-directed RNA polymerase III subunit RPC7 / DNA-directed RNA polymerase III subunit RPC9 / DNA-directed RNA polymerase III subunit RPC4 / DNA-directed RNA polymerases I and III subunit RPAC2 / DNA-directed RNA polymerases I, II, and III subunit RPABC1 / DNA-directed RNA polymerases I, II, and III subunit RPABC3 / DNA-directed RNA polymerases I, II, and III subunit RPABC4 / DNA-directed RNA polymerases I, II, and III subunit RPABC2 ...DNA-directed RNA polymerase III subunit RPC1 / DNA-directed RNA polymerases I and III subunit RPAC1 / DNA-directed RNA polymerase III subunit RPC7 / DNA-directed RNA polymerase III subunit RPC9 / DNA-directed RNA polymerase III subunit RPC4 / DNA-directed RNA polymerases I and III subunit RPAC2 / DNA-directed RNA polymerases I, II, and III subunit RPABC1 / DNA-directed RNA polymerases I, II, and III subunit RPABC3 / DNA-directed RNA polymerases I, II, and III subunit RPABC4 / DNA-directed RNA polymerases I, II, and III subunit RPABC2 / DNA-directed RNA polymerases I, II, and III subunit RPABC5 / DNA-directed RNA polymerase III subunit RPC3 / DNA-directed RNA polymerase III subunit RPC6 / DNA-directed RNA polymerase III subunit RPC5 / DNA-directed RNA polymerase III subunit RPC2 / DNA-directed RNA polymerase III subunit RPC10 / DNA-directed RNA polymerase III subunit RPC8 Similarity search - Component
Biological species
Homo sapiens (human)
Method
single particle reconstruction / cryo EM / Resolution: 3.3 Å
Journal: Nat Struct Mol Biol / Year: 2021 Title: Cryo-EM structures of human RNA polymerase III in its unbound and transcribing states. Authors: Mathias Girbig / Agata D Misiaszek / Matthias K Vorländer / Aleix Lafita / Helga Grötsch / Florence Baudin / Alex Bateman / Christoph W Müller / Abstract: RNA polymerase III (Pol III) synthesizes transfer RNAs and other short, essential RNAs. Human Pol III misregulation is linked to tumor transformation, neurodegenerative and developmental disorders, ...RNA polymerase III (Pol III) synthesizes transfer RNAs and other short, essential RNAs. Human Pol III misregulation is linked to tumor transformation, neurodegenerative and developmental disorders, and increased sensitivity to viral infections. Here, we present cryo-electron microscopy structures at 2.8 to 3.3 Å resolution of transcribing and unbound human Pol III. We observe insertion of the TFIIS-like subunit RPC10 into the polymerase funnel, providing insights into how RPC10 triggers transcription termination. Our structures resolve elements absent from Saccharomyces cerevisiae Pol III such as the winged-helix domains of RPC5 and an iron-sulfur cluster, which tethers the heterotrimer subcomplex to the core. The cancer-associated RPC7α isoform binds the polymerase clamp, potentially interfering with Pol III inhibition by tumor suppressor MAF1, which may explain why overexpressed RPC7α enhances tumor transformation. Finally, the human Pol III structure allows mapping of disease-related mutations and may contribute to the development of inhibitors that selectively target Pol III for therapeutic interventions.
History
Deposition
Aug 25, 2020
-
Header (metadata) release
Feb 3, 2021
-
Map release
Feb 3, 2021
-
Update
May 1, 2024
-
Current status
May 1, 2024
Processing site: PDBe / Status: Released
-
Structure visualization
Movie
Surface view with section colored by density value
EMPIAR-10697 (Title: Cryo-EM structures of human RNA Polymerase III / Data size: 3.3 TB Data #1: LZW-TIFF compressed multiframe micrographs of human RNA Pol III EC [micrographs - multiframe] Data #2: Initially picked particles of human RNA Pol III EC [picked particles - single frame - processed] Data #3: Polished particles of human RNA Pol III EC (final reconstruction) [picked particles - single frame - processed] Data #4: LZW-TIFF compressed multiframe micrographs of human RNA Pol III apo [micrographs - multiframe] Data #5: Initially picked particles of human RNA Pol III apo [picked particles - single frame - processed] Data #6: Polished particles of human RNA Pol III apo (final reconstruction) [picked particles - single frame - processed])
Cryogen name: ETHANE / Chamber humidity: 100 % / Chamber temperature: 277 K / Instrument: FEI VITROBOT MARK IV / Details: Wait time 10 s Blot force 4 Blot time 4 s.
-
Electron microscopy
Microscope
FEI TITAN KRIOS
Image recording
Film or detector model: GATAN K3 (6k x 4k) / Detector mode: COUNTING / Average electron dose: 38.11 e/Å2
Electron beam
Acceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi