[English] 日本語

- EMDB-11441: Human RIO1(kd)-StHA late pre-40S particle, structural state B (po... -
+
Open data
-
Basic information
Entry | Database: EMDB / ID: EMD-11441 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | Human RIO1(kd)-StHA late pre-40S particle, structural state B (post 18S rRNA cleavage) | |||||||||
![]() | Human pre-40S particles purified using RIO1(kd)-StHA as bait - State B | |||||||||
![]() |
| |||||||||
![]() | Human ribosome biogenesis / small ribosomal subunit / rRNA processing / RIBOSOME | |||||||||
Function / homology | ![]() methyltransferase complex / Hydrolases; Acting on acid anhydrides; Acting on acid anhydrides to catalyse transmembrane movement of substances / positive regulation of rRNA processing / negative regulation of endoplasmic reticulum unfolded protein response / oxidized pyrimidine DNA binding / response to TNF agonist / positive regulation of base-excision repair / negative regulation of peptidyl-serine phosphorylation / positive regulation of respiratory burst involved in inflammatory response / positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage ...methyltransferase complex / Hydrolases; Acting on acid anhydrides; Acting on acid anhydrides to catalyse transmembrane movement of substances / positive regulation of rRNA processing / negative regulation of endoplasmic reticulum unfolded protein response / oxidized pyrimidine DNA binding / response to TNF agonist / positive regulation of base-excision repair / negative regulation of peptidyl-serine phosphorylation / positive regulation of respiratory burst involved in inflammatory response / positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage / positive regulation of gastrulation / nucleolus organization / regulation of adenylate cyclase-activating G protein-coupled receptor signaling pathway / protein tyrosine kinase inhibitor activity / IRE1-RACK1-PP2A complex / positive regulation of endodeoxyribonuclease activity / positive regulation of Golgi to plasma membrane protein transport / translation at postsynapse / TNFR1-mediated ceramide production / negative regulation of DNA repair / negative regulation of RNA splicing / mammalian oogenesis stage / supercoiled DNA binding / activation-induced cell death of T cells / neural crest cell differentiation / NF-kappaB complex / oxidized purine DNA binding / cysteine-type endopeptidase activator activity involved in apoptotic process / negative regulation of intrinsic apoptotic signaling pathway in response to hydrogen peroxide / ubiquitin-like protein conjugating enzyme binding / regulation of establishment of cell polarity / translation at presynapse / positive regulation of ubiquitin-protein transferase activity / rRNA modification in the nucleus and cytosol / Formation of the ternary complex, and subsequently, the 43S complex / negative regulation of phagocytosis / erythrocyte homeostasis / cytoplasmic side of rough endoplasmic reticulum membrane / laminin receptor activity / protein kinase A binding / preribosome, small subunit precursor / negative regulation of ubiquitin protein ligase activity / pigmentation / Ribosomal scanning and start codon recognition / ion channel inhibitor activity / Translation initiation complex formation / positive regulation of mitochondrial depolarization / positive regulation of T cell receptor signaling pathway / positive regulation of activated T cell proliferation / fibroblast growth factor binding / negative regulation of Wnt signaling pathway / monocyte chemotaxis / negative regulation of translational frameshifting / Protein hydroxylation / BH3 domain binding / TOR signaling / SARS-CoV-1 modulates host translation machinery / regulation of cell division / mTORC1-mediated signalling / T cell proliferation involved in immune response / Peptide chain elongation / iron-sulfur cluster binding / positive regulation of intrinsic apoptotic signaling pathway by p53 class mediator / Selenocysteine synthesis / positive regulation of signal transduction by p53 class mediator / Formation of a pool of free 40S subunits / endonucleolytic cleavage to generate mature 3'-end of SSU-rRNA from (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / Eukaryotic Translation Termination / ubiquitin ligase inhibitor activity / Response of EIF2AK4 (GCN2) to amino acid deficiency / SRP-dependent cotranslational protein targeting to membrane / negative regulation of ubiquitin-dependent protein catabolic process / Viral mRNA Translation / phagocytic cup / negative regulation of respiratory burst involved in inflammatory response / Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) / GTP hydrolysis and joining of the 60S ribosomal subunit / L13a-mediated translational silencing of Ceruloplasmin expression / erythrocyte development / Major pathway of rRNA processing in the nucleolus and cytosol / regulation of translational fidelity / endonucleolytic cleavage in ITS1 to separate SSU-rRNA from 5.8S rRNA and LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) / Protein methylation / spindle assembly / Nuclear events stimulated by ALK signaling in cancer / ribosomal small subunit export from nucleus / positive regulation of intrinsic apoptotic signaling pathway / laminin binding / rough endoplasmic reticulum / translation regulator activity / Amplification of signal from unattached kinetochores via a MAD2 inhibitory signal / positive regulation of cell cycle / translation initiation factor binding / signaling adaptor activity / gastrulation / Maturation of protein E / Maturation of protein E / MDM2/MDM4 family protein binding / positive regulation of microtubule polymerization Similarity search - Function | |||||||||
Biological species | ![]() | |||||||||
Method | single particle reconstruction / cryo EM / Resolution: 2.9 Å | |||||||||
![]() | Plassart L / Shayan R | |||||||||
Funding support | ![]()
| |||||||||
![]() | ![]() Title: The final step of 40S ribosomal subunit maturation is controlled by a dual key lock. Authors: Laura Plassart / Ramtin Shayan / Christian Montellese / Dana Rinaldi / Natacha Larburu / Carole Pichereaux / Carine Froment / Simon Lebaron / Marie-Françoise O'Donohue / Ulrike Kutay / ...Authors: Laura Plassart / Ramtin Shayan / Christian Montellese / Dana Rinaldi / Natacha Larburu / Carole Pichereaux / Carine Froment / Simon Lebaron / Marie-Françoise O'Donohue / Ulrike Kutay / Julien Marcoux / Pierre-Emmanuel Gleizes / Celia Plisson-Chastang / ![]() ![]() Abstract: Preventing premature interaction of pre-ribosomes with the translation apparatus is essential for translational accuracy. Hence, the final maturation step releasing functional 40S ribosomal subunits, ...Preventing premature interaction of pre-ribosomes with the translation apparatus is essential for translational accuracy. Hence, the final maturation step releasing functional 40S ribosomal subunits, namely processing of the 18S ribosomal RNA 3' end, is safeguarded by the protein DIM2, which both interacts with the endoribonuclease NOB1 and masks the rRNA cleavage site. To elucidate the control mechanism that unlocks NOB1 activity, we performed cryo-electron microscopy analysis of late human pre-40S particles purified using a catalytically inactive form of the ATPase RIO1. These structures, together with in vivo and in vitro functional analyses, support a model in which ATP-loaded RIO1 cooperates with ribosomal protein RPS26/eS26 to displace DIM2 from the 18S rRNA 3' end, thereby triggering final cleavage by NOB1; release of ADP then leads to RIO1 dissociation from the 40S subunit. This dual key lock mechanism requiring RIO1 and RPS26 guarantees the precise timing of pre-40S particle conversion into translation-competent ribosomal subunits. | |||||||||
History |
|
-
Structure visualization
Movie |
![]() |
---|---|
Structure viewer | EM map: ![]() ![]() ![]() |
Supplemental images |
-
Downloads & links
-EMDB archive
Map data | ![]() | 23.1 MB | ![]() | |
---|---|---|---|---|
Header (meta data) | ![]() ![]() | 55.1 KB 55.1 KB | Display Display | ![]() |
Images | ![]() | 48.1 KB | ||
Filedesc metadata | ![]() | 12.8 KB | ||
Archive directory | ![]() ![]() | HTTPS FTP |
-Validation report
Summary document | ![]() | 425.8 KB | Display | ![]() |
---|---|---|---|---|
Full document | ![]() | 425.4 KB | Display | |
Data in XML | ![]() | 7 KB | Display | |
Data in CIF | ![]() | 8.1 KB | Display | |
Arichive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 6zv6MC ![]() 6zuoC C: citing same article ( M: atomic model generated by this map |
---|---|
Similar structure data |
-
Links
EMDB pages | ![]() ![]() |
---|---|
Related items in Molecule of the Month |
-
Map
File | ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | Human pre-40S particles purified using RIO1(kd)-StHA as bait - State B | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voxel size | X=Y=Z: 1.04 Å | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Density |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Details | EMDB XML:
CCP4 map header:
|
-Supplemental data
-
Sample components
+Entire : human cytoplasmic late precursor to the small ribosomal subunit, ...
+Supramolecule #1: human cytoplasmic late precursor to the small ribosomal subunit, ...
+Macromolecule #1: 18S ribosomal RNA
+Macromolecule #2: 40S ribosomal protein SA
+Macromolecule #3: 40S ribosomal protein S3a
+Macromolecule #4: 40S ribosomal protein S2
+Macromolecule #5: 40S ribosomal protein S3
+Macromolecule #6: 40S ribosomal protein S4, X isoform
+Macromolecule #7: 40S ribosomal protein S5
+Macromolecule #8: 40S ribosomal protein S6
+Macromolecule #9: 40S ribosomal protein S7
+Macromolecule #10: 40S ribosomal protein S8
+Macromolecule #11: 40S ribosomal protein S9
+Macromolecule #12: 40S ribosomal protein S10
+Macromolecule #13: 40S ribosomal protein S11
+Macromolecule #14: 40S ribosomal protein S12
+Macromolecule #15: 40S ribosomal protein S13
+Macromolecule #16: 40S ribosomal protein S14
+Macromolecule #17: 40S ribosomal protein S15
+Macromolecule #18: 40S ribosomal protein S16
+Macromolecule #19: 40S ribosomal protein S17
+Macromolecule #20: 40S ribosomal protein S18
+Macromolecule #21: 40S ribosomal protein S26
+Macromolecule #22: 40S ribosomal protein S20
+Macromolecule #23: 40S ribosomal protein S21
+Macromolecule #24: 40S ribosomal protein S15a
+Macromolecule #25: 40S ribosomal protein S23
+Macromolecule #26: 40S ribosomal protein S24
+Macromolecule #27: 40S ribosomal protein S25
+Macromolecule #28: 40S ribosomal protein S27
+Macromolecule #29: 40S ribosomal protein S28
+Macromolecule #30: 40S ribosomal protein S29
+Macromolecule #31: 40S ribosomal protein S30
+Macromolecule #32: Ubiquitin-40S ribosomal protein S27a
+Macromolecule #33: Receptor of activated protein C kinase 1
+Macromolecule #34: 40S ribosomal protein S19
+Macromolecule #35: Serine/threonine-protein kinase RIO1
+Macromolecule #36: MAGNESIUM ION
+Macromolecule #37: ZINC ION
+Macromolecule #38: ADENOSINE-5'-DIPHOSPHATE
+Macromolecule #39: water
-Experimental details
-Structure determination
Method | cryo EM |
---|---|
![]() | single particle reconstruction |
Aggregation state | particle |
-
Sample preparation
Buffer | pH: 7.6 |
---|---|
Grid | Model: Quantifoil R2/1 / Material: COPPER / Mesh: 300 / Support film - Material: CARBON / Support film - topology: CONTINUOUS / Support film - Film thickness: 2 / Pretreatment - Type: GLOW DISCHARGE / Pretreatment - Time: 30 sec. / Pretreatment - Atmosphere: AIR |
Vitrification | Cryogen name: ETHANE / Chamber humidity: 95 % / Chamber temperature: 291 K / Instrument: LEICA EM GP |
-
Electron microscopy
Microscope | FEI TITAN KRIOS |
---|---|
Image recording | Film or detector model: GATAN K2 SUMMIT (4k x 4k) / Detector mode: COUNTING / Number grids imaged: 1 / Number real images: 9494 / Average electron dose: 29.4 e/Å2 |
Electron beam | Acceleration voltage: 300 kV / Electron source: ![]() |
Electron optics | Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD |
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |