- EMDB-10595: Cryo-EM structure of the RNA Polymerase III-Maf1 complex -
+
Open data
ID or keywords:
Loading...
-
Basic information
Entry
Database: EMDB / ID: EMD-10595
Title
Cryo-EM structure of the RNA Polymerase III-Maf1 complex
Map data
Sharpened and locally filtered EM map
Sample
Complex: RNA Polymerase III - Maf1 complex
Complex: DNA-directed RNA polymerase III
Protein or peptide: x 17 types
Complex: Repressor of RNA polymerase III transcription MAF1
Protein or peptide: x 1 types
Ligand: x 1 types
Keywords
Transcription / RNA Polymerase III / Pol III / Maf1 / transcription inhibition
Function / homology
Function and homology information
Regulation of PTEN gene transcription / RNA polymerase III core binding / negative regulation of transcription by RNA polymerase III / RNA Polymerase I Transcription Initiation / Processing of Capped Intron-Containing Pre-mRNA / RNA Polymerase III Transcription Initiation From Type 2 Promoter / RNA Pol II CTD phosphorylation and interaction with CE / Formation of the Early Elongation Complex / mRNA Capping / RNA polymerase II transcribes snRNA genes ...Regulation of PTEN gene transcription / RNA polymerase III core binding / negative regulation of transcription by RNA polymerase III / RNA Polymerase I Transcription Initiation / Processing of Capped Intron-Containing Pre-mRNA / RNA Polymerase III Transcription Initiation From Type 2 Promoter / RNA Pol II CTD phosphorylation and interaction with CE / Formation of the Early Elongation Complex / mRNA Capping / RNA polymerase II transcribes snRNA genes / TP53 Regulates Transcription of DNA Repair Genes / RNA Polymerase II Promoter Escape / RNA Polymerase II Transcription Pre-Initiation And Promoter Opening / RNA Polymerase II Transcription Initiation / RNA Polymerase II Transcription Initiation And Promoter Clearance / termination of RNA polymerase III transcription / RNA Polymerase II Pre-transcription Events / RNA-templated transcription / Formation of TC-NER Pre-Incision Complex / RNA Polymerase I Promoter Escape / transcription initiation at RNA polymerase III promoter / termination of RNA polymerase I transcription / nucleolar large rRNA transcription by RNA polymerase I / Gap-filling DNA repair synthesis and ligation in TC-NER / transcription initiation at RNA polymerase I promoter / Estrogen-dependent gene expression / Dual incision in TC-NER / transcription by RNA polymerase III / transcription by RNA polymerase I / RNA polymerase I complex / transcription elongation by RNA polymerase I / RNA polymerase III complex / RNA polymerase II, core complex / tRNA transcription by RNA polymerase III / : / DNA-directed RNA polymerase activity / nucleotidyltransferase activity / transcription initiation at RNA polymerase II promoter / transcription elongation by RNA polymerase II / ribonucleoside binding / : / : / : / : / : / : / DNA-directed RNA polymerase / peroxisome / ribosome biogenesis / single-stranded DNA binding / transcription by RNA polymerase II / nucleic acid binding / protein dimerization activity / nucleotide binding / nucleolus / mitochondrion / DNA binding / zinc ion binding / nucleoplasm / metal ion binding / nucleus / cytosol / cytoplasm Similarity search - Function
Repressor of RNA polymerase III transcription Maf1 / Repressor of RNA polymerase III transcription Maf1 superfamily / Maf1 regulator / DNA-directed RNA polymerase III subunit RPC4 / RNA polymerase III RPC4 / DNA-directed RNA polymerase III, subunit Rpc31 / DNA-directed RNA polymerase III subunit Rpc31 / Pol III subunit C11, C-terminal zinc ribbon / DNA-directed RNA polymerase III subunit Rpc5 / : ...Repressor of RNA polymerase III transcription Maf1 / Repressor of RNA polymerase III transcription Maf1 superfamily / Maf1 regulator / DNA-directed RNA polymerase III subunit RPC4 / RNA polymerase III RPC4 / DNA-directed RNA polymerase III, subunit Rpc31 / DNA-directed RNA polymerase III subunit Rpc31 / Pol III subunit C11, C-terminal zinc ribbon / DNA-directed RNA polymerase III subunit Rpc5 / : / DNA-directed RNA polymerase III subunit RPC1, N-terminal / DNA-directed RNA polymerase III subunit RPC1, C-terminal / RPC5 protein / RNA polymerase III, subunit Rpc25 / DNA-directed RNA polymerase III subunit RPC9 / RNA polymerase III subunit Rpc25 / RNA polymerase Rpc34 / RNA polymerase III Rpc82, C -terminal / RNA polymerase Rpc34-like / DNA-directed RNA polymerase III subunit RPC3 / : / RNA polymerase Rpc34 subunit / RNA polymerase III subunit RPC82 / DNA-directed RNA polymerase III subunit RPC3, helical hairpin domain / POLR3C, C-terminal winged-helix domain / RNA polymerase III subunit RPC82-related, helix-turn-helix / RNA polymerase III subunit RPC82 helix-turn-helix domain / DNA-directed RNA polymerase, subunit E/RPC8 / DNA-directed RNA polymerases I and III subunit AC19 / DNA-directed RNA polymerases I and III subunit AC40 / Rpb4/RPC9 superfamily / RNA polymerase subunit Rpb4/RPC9 / RNA polymerase Rpb4 / HRDC-like superfamily / RNA polymerase Rpb7-like , N-terminal / RNA polymerase Rpb7-like, N-terminal domain superfamily / RNA polymerase subunit Rpb7-like / SHS2 domain found in N terminus of Rpb7p/Rpc25p/MJ0397 / RNA polymerase Rpb2, domain 5 / RNA polymerase Rpb2, domain 5 / RNA polymerase Rpb2, domain 4 / RNA polymerase Rpb2, domain 4 / DNA-directed RNA polymerase, M/15kDa subunit / RNA polymerases M/15 Kd subunit / RNA polymerase subunit 9 / DNA-directed RNA polymerase M, 15kDa subunit, conserved site / RNA polymerases M / 15 Kd subunits signature. / DNA-directed RNA polymerase subunit/transcription factor S / : / RNA polymerase, Rpb8 / DNA-directed RNA polymerases I, II, and III subunit RPABC4 / RNA polymerase Rpb8 / RNA polymerase subunit 8 / RNA polymerase, Rpb5, N-terminal / RNA polymerase Rpb5, N-terminal domain superfamily / RNA polymerase Rpb5, N-terminal domain / DNA-directed RNA polymerase, subunit RPB6 / DNA-directed RNA polymerase subunit RPABC5/Rpb10 / RNA polymerases, subunit N, zinc binding site / RNA polymerase subunit RPB10 / RNA polymerases N / 8 kDa subunit / RNA polymerases N / 8 Kd subunits signature. / DNA directed RNA polymerase, 7 kDa subunit / RNA polymerase archaeal subunit P/eukaryotic subunit RPABC4 / RNA polymerase, subunit H/Rpb5, conserved site / RNA polymerases H / 23 Kd subunits signature. / RNA polymerase subunit CX / DNA-directed RNA polymerase, 30-40kDa subunit, conserved site / DNA-directed RNA polymerase subunit Rpo3/Rpb3/RPAC1 / RNA polymerases D / 30 to 40 Kd subunits signature. / DNA-directed RNA polymerase Rpb11, 13-16kDa subunit, conserved site / DNA-directed RNA polymerase subunit Rpo11 / RNA polymerases L / 13 to 16 Kd subunits signature. / Zinc finger, TFIIS-type / Transcription factor S-II (TFIIS) / Zinc finger TFIIS-type profile. / C2C2 Zinc finger / RNA polymerase subunit RPABC4/transcription elongation factor Spt4 / DNA-directed RNA polymerase, RBP11-like dimerisation domain / RNA polymerase Rpb3/Rpb11 dimerisation domain / RNA polymerase, subunit H/Rpb5 C-terminal / DNA-directed RNA polymerase subunit Rpo5/Rpb5 / RPB5-like RNA polymerase subunit superfamily / RNA polymerase Rpb5, C-terminal domain / Archaeal Rpo6/eukaryotic RPB6 RNA polymerase subunit / DNA-directed RNA polymerase, 14-18kDa subunit, conserved site / RNA polymerases K / 14 to 18 Kd subunits signature. / RNA polymerase Rpb6 / RNA polymerase, subunit omega/Rpo6/RPB6 / RNA polymerase Rpb6 / RNA polymerase Rpb2, domain 2 superfamily / RNA polymerase Rpb1, domain 3 superfamily / RPB6/omega subunit-like superfamily / DNA-directed RNA polymerase, insert domain / DNA-directed RNA polymerase, RpoA/D/Rpb3-type / RNA polymerase Rpb3/RpoA insert domain / RNA polymerase Rpb3/Rpb11 dimerisation domain / RNA polymerases D / RNA polymerase Rpb1, clamp domain superfamily / RNA polymerase Rpb1, domain 3 Similarity search - Domain/homology
DNA-directed RNA polymerase III subunit RPC1 / DNA-directed RNA polymerases I and III subunit RPAC1 / DNA-directed RNA polymerase III subunit RPC7 / DNA-directed RNA polymerases I, II, and III subunit RPABC1 / DNA-directed RNA polymerases I, II, and III subunit RPABC2 / DNA-directed RNA polymerases I, II, and III subunit RPABC3 / DNA-directed RNA polymerases I, II, and III subunit RPABC5 / DNA-directed RNA polymerase III subunit RPC2 / DNA-directed RNA polymerase III subunit RPC4 / DNA-directed RNA polymerases I and III subunit RPAC2 ...DNA-directed RNA polymerase III subunit RPC1 / DNA-directed RNA polymerases I and III subunit RPAC1 / DNA-directed RNA polymerase III subunit RPC7 / DNA-directed RNA polymerases I, II, and III subunit RPABC1 / DNA-directed RNA polymerases I, II, and III subunit RPABC2 / DNA-directed RNA polymerases I, II, and III subunit RPABC3 / DNA-directed RNA polymerases I, II, and III subunit RPABC5 / DNA-directed RNA polymerase III subunit RPC2 / DNA-directed RNA polymerase III subunit RPC4 / DNA-directed RNA polymerases I and III subunit RPAC2 / DNA-directed RNA polymerase III subunit RPC3 / DNA-directed RNA polymerase III subunit RPC6 / DNA-directed RNA polymerase III subunit RPC8 / DNA-directed RNA polymerase III subunit RPC5 / DNA-directed RNA polymerases I, II, and III subunit RPABC4 / Repressor of RNA polymerase III transcription MAF1 / DNA-directed RNA polymerase III subunit RPC9 / DNA-directed RNA polymerase III subunit RPC10 Similarity search - Component
Biological species
Saccharomyces cerevisiae S288C (yeast)
Method
single particle reconstruction / cryo EM / Resolution: 3.25 Å
Journal: Nat Struct Mol Biol / Year: 2020 Title: Structural basis for RNA polymerase III transcription repression by Maf1. Authors: Matthias K Vorländer / Florence Baudin / Robyn D Moir / René Wetzel / Wim J H Hagen / Ian M Willis / Christoph W Müller / Abstract: Maf1 is a conserved inhibitor of RNA polymerase III (Pol III) that influences phenotypes ranging from metabolic efficiency to lifespan. Here, we present a 3.3-Å-resolution cryo-EM structure of yeast ...Maf1 is a conserved inhibitor of RNA polymerase III (Pol III) that influences phenotypes ranging from metabolic efficiency to lifespan. Here, we present a 3.3-Å-resolution cryo-EM structure of yeast Maf1 bound to Pol III, establishing that Maf1 sequesters Pol III elements involved in transcription initiation and binds the mobile C34 winged helix 2 domain, sealing off the active site. The Maf1 binding site overlaps with that of TFIIIB in the preinitiation complex.
History
Deposition
Jan 8, 2020
-
Header (metadata) release
Feb 19, 2020
-
Map release
Feb 19, 2020
-
Update
May 22, 2024
-
Current status
May 22, 2024
Processing site: PDBe / Status: Released
-
Structure visualization
Movie
Surface view with section colored by density value
UniProtKB: DNA-directed RNA polymerase III subunit RPC7
+
Macromolecule #18: Repressor of RNA polymerase III transcription MAF1,Repressor of R...
Macromolecule
Name: Repressor of RNA polymerase III transcription MAF1,Repressor of RNA polymerase III transcription MAF1 type: protein_or_peptide / ID: 18 / Number of copies: 1 / Enantiomer: LEVO
UniProtKB: Repressor of RNA polymerase III transcription MAF1, Repressor of RNA polymerase III transcription MAF1
+
Macromolecule #19: ZINC ION
Macromolecule
Name: ZINC ION / type: ligand / ID: 19 / Number of copies: 7 / Formula: ZN
Molecular weight
Theoretical: 65.409 Da
-
Experimental details
-
Structure determination
Method
cryo EM
Processing
single particle reconstruction
Aggregation state
particle
-
Sample preparation
Concentration
0.15 mg/mL
Buffer
pH: 7.5 / Details: 15 mM HEPES, 150 mM (NH4)2SO4, 5 mM DTT
Grid
Model: Quantifoil R2/1 / Material: COPPER / Mesh: 200 / Support film - Material: CARBON / Support film - topology: CONTINUOUS / Support film - Film thickness: 2 / Pretreatment - Type: GLOW DISCHARGE / Pretreatment - Time: 30 sec.
Vitrification
Cryogen name: ETHANE / Chamber humidity: 100 % / Chamber temperature: 278 K / Instrument: FEI VITROBOT MARK IV / Details: Blot time 6, blot force 2.
Details
crosslinked with BS3
-
Electron microscopy
Microscope
FEI TITAN KRIOS
Specialist optics
Energy filter - Name: GIF Quantum LS / Energy filter - Slit width: 20 eV
Image recording
Film or detector model: GATAN K2 SUMMIT (4k x 4k) / Number grids imaged: 1 / Number real images: 10520 / Average exposure time: 14.0 sec. / Average electron dose: 60.5 e/Å2
Electron beam
Acceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi