[English] 日本語
Yorodumi
- EMDB-10333: Structure of active GID E3 ubiquitin ligase complex minus Gid2 an... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: EMDB / ID: EMD-10333
TitleStructure of active GID E3 ubiquitin ligase complex minus Gid2 and delta Gid9 RING domain
Map data
Sample
  • Complex: GIDSR4 minus Gid2/delta Gid9RING
    • Protein or peptide: Vacuolar import and degradation protein 28
    • Protein or peptide: Glucose-induced degradation protein 8
    • Protein or peptide: Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30
    • Protein or peptide: Vacuolar import and degradation protein 24
    • Protein or peptide: Protein FYV10,Protein FYV10,Protein FYV10,Protein FYV10,Protein FYV10,Protein FYV10,Protein FYV10
Function / homology
Function and homology information


protein catabolic process in the vacuole / GID complex / ubiquitin-dependent protein catabolic process via the N-end rule pathway / ascospore formation / protein targeting to vacuole / traversing start control point of mitotic cell cycle / regulation of nitrogen utilization / vacuole / extrinsic component of membrane / negative regulation of gluconeogenesis ...protein catabolic process in the vacuole / GID complex / ubiquitin-dependent protein catabolic process via the N-end rule pathway / ascospore formation / protein targeting to vacuole / traversing start control point of mitotic cell cycle / regulation of nitrogen utilization / vacuole / extrinsic component of membrane / negative regulation of gluconeogenesis / Neutrophil degranulation / RING-type E3 ubiquitin transferase / cytoplasmic vesicle membrane / ubiquitin protein ligase activity / cytoplasmic vesicle / proteasome-mediated ubiquitin-dependent protein catabolic process / protein ubiquitination / cell cycle / negative regulation of apoptotic process / metal ion binding / nucleus / cytosol / cytoplasm
Similarity search - Function
Ran-binding protein Vid30/RanBPM/SPLA, SPRY domain / Armadillo-type fold containing protein ARMC8/Vid28 / Fyv10 family / Gid-type RING finger domain / Gid-type RING finger profile. / CRA domain / CT11-RanBPM / CTLH/CRA C-terminal to LisH motif domain / CTLH/CRA C-terminal to LisH motif domain / Vacuolar import/degradation protein Vid24 ...Ran-binding protein Vid30/RanBPM/SPLA, SPRY domain / Armadillo-type fold containing protein ARMC8/Vid28 / Fyv10 family / Gid-type RING finger domain / Gid-type RING finger profile. / CRA domain / CT11-RanBPM / CTLH/CRA C-terminal to LisH motif domain / CTLH/CRA C-terminal to LisH motif domain / Vacuolar import/degradation protein Vid24 / Vacuolar import and degradation protein / C-terminal to LisH motif. / CTLH, C-terminal LisH motif / C-terminal to LisH (CTLH) motif profile. / LIS1 homology (LisH) motif profile. / LIS1 homology motif / SPRY domain / B30.2/SPRY domain / B30.2/SPRY domain profile. / SPRY domain / B30.2/SPRY domain superfamily / Domain in SPla and the RYanodine Receptor. / Armadillo-like helical / Concanavalin A-like lectin/glucanase domain superfamily / Armadillo-type fold
Similarity search - Domain/homology
Vacuolar import and degradation protein 24 / Glucose-induced degradation protein 8 / Protein FYV10 / Vacuolar import and degradation protein 28 / Vacuolar import and degradation protein 30
Similarity search - Component
Biological speciesSaccharomyces cerevisiae S288c (yeast) / Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (yeast)
Methodsingle particle reconstruction / cryo EM / Resolution: 3.2 Å
AuthorsQiao S / Prabu JR / Schulman BA
Funding support Germany, 1 items
OrganizationGrant numberCountry
Max Planck Society Germany
CitationJournal: Mol Cell / Year: 2020
Title: Interconversion between Anticipatory and Active GID E3 Ubiquitin Ligase Conformations via Metabolically Driven Substrate Receptor Assembly.
Authors: Shuai Qiao / Christine R Langlois / Jakub Chrustowicz / Dawafuti Sherpa / Ozge Karayel / Fynn M Hansen / Viola Beier / Susanne von Gronau / Daniel Bollschweiler / Tillman Schäfer / Arno F ...Authors: Shuai Qiao / Christine R Langlois / Jakub Chrustowicz / Dawafuti Sherpa / Ozge Karayel / Fynn M Hansen / Viola Beier / Susanne von Gronau / Daniel Bollschweiler / Tillman Schäfer / Arno F Alpi / Matthias Mann / J Rajan Prabu / Brenda A Schulman /
Abstract: Cells respond to environmental changes by toggling metabolic pathways, preparing for homeostasis, and anticipating future stresses. For example, in Saccharomyces cerevisiae, carbon stress-induced ...Cells respond to environmental changes by toggling metabolic pathways, preparing for homeostasis, and anticipating future stresses. For example, in Saccharomyces cerevisiae, carbon stress-induced gluconeogenesis is terminated upon glucose availability, a process that involves the multiprotein E3 ligase GID recruiting N termini and catalyzing ubiquitylation of gluconeogenic enzymes. Here, genetics, biochemistry, and cryoelectron microscopy define molecular underpinnings of glucose-induced degradation. Unexpectedly, carbon stress induces an inactive anticipatory complex (GID), which awaits a glucose-induced substrate receptor to form the active GID. Meanwhile, other environmental perturbations elicit production of an alternative substrate receptor assembling into a related E3 ligase complex. The intricate structure of GID enables anticipating and ultimately binding various N-degron-targeting (i.e., "N-end rule") substrate receptors, while the GID E3 forms a clamp-like structure juxtaposing substrate lysines with the ubiquitylation active site. The data reveal evolutionarily conserved GID complexes as a family of multisubunit E3 ubiquitin ligases responsive to extracellular stimuli.
History
DepositionSep 24, 2019-
Header (metadata) releaseNov 13, 2019-
Map releaseNov 20, 2019-
UpdateJul 20, 2022-
Current statusJul 20, 2022Processing site: PDBe / Status: Released

-
Structure visualization

Movie
  • Surface view with section colored by density value
  • Surface level: 0.0306
  • Imaged by UCSF Chimera
  • Download
  • Surface view colored by radius
  • Surface level: 0.0306
  • Imaged by UCSF Chimera
  • Download
  • Surface view with fitted model
  • Atomic models: PDB-6swy
  • Surface level: 0.0306
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerEM map:
SurfViewMolmilJmol/JSmol
Supplemental images

Downloads & links

-
Map

FileDownload / File: emd_10333.map.gz / Format: CCP4 / Size: 83.7 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES)
Voxel sizeX=Y=Z: 1.09 Å
Density
Contour LevelBy AUTHOR: 0.0306 / Movie #1: 0.0306
Minimum - Maximum-0.030106764 - 0.083930045
Average (Standard dev.)0.00016181557 (±0.0031186326)
SymmetrySpace group: 1
Details

EMDB XML:

Map geometry
Axis orderXYZ
Origin000
Dimensions280280280
Spacing280280280
CellA=B=C: 305.2 Å
α=β=γ: 90.0 °

CCP4 map header:

modeImage stored as Reals
Å/pix. X/Y/Z1.091.091.09
M x/y/z280280280
origin x/y/z0.0000.0000.000
length x/y/z305.200305.200305.200
α/β/γ90.00090.00090.000
MAP C/R/S123
start NC/NR/NS000
NC/NR/NS280280280
D min/max/mean-0.1400.2740.000

-
Supplemental data

-
Mask #1

Fileemd_10333_msk_1.map
Projections & Slices
AxesZYX

Projections

Slices (1/2)
Density Histograms

-
Additional map: #1

Fileemd_10333_additional.map
Projections & Slices
AxesZYX

Projections

Slices (1/2)
Density Histograms

-
Half map: #2

Fileemd_10333_half_map_1.map
Projections & Slices
AxesZYX

Projections

Slices (1/2)
Density Histograms

-
Half map: #1

Fileemd_10333_half_map_2.map
Projections & Slices
AxesZYX

Projections

Slices (1/2)
Density Histograms

-
Sample components

-
Entire : GIDSR4 minus Gid2/delta Gid9RING

EntireName: GIDSR4 minus Gid2/delta Gid9RING
Components
  • Complex: GIDSR4 minus Gid2/delta Gid9RING
    • Protein or peptide: Vacuolar import and degradation protein 28
    • Protein or peptide: Glucose-induced degradation protein 8
    • Protein or peptide: Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30
    • Protein or peptide: Vacuolar import and degradation protein 24
    • Protein or peptide: Protein FYV10,Protein FYV10,Protein FYV10,Protein FYV10,Protein FYV10,Protein FYV10,Protein FYV10

-
Supramolecule #1: GIDSR4 minus Gid2/delta Gid9RING

SupramoleculeName: GIDSR4 minus Gid2/delta Gid9RING / type: complex / ID: 1 / Parent: 0 / Macromolecule list: all
Source (natural)Organism: Saccharomyces cerevisiae S288c (yeast) / Strain: S288C and YJM1133
Recombinant expressionOrganism: Spodoptera aff. frugiperda 1 BOLD-2017 (butterflies/moths)

-
Macromolecule #1: Vacuolar import and degradation protein 28

MacromoleculeName: Vacuolar import and degradation protein 28 / type: protein_or_peptide / ID: 1 / Number of copies: 1 / Enantiomer: LEVO
Source (natural)Organism: Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (yeast)
Strain: ATCC 204508 / S288c
Molecular weightTheoretical: 105.658203 KDa
Recombinant expressionOrganism: Spodoptera aff. frugiperda 1 BOLD-2017 (butterflies/moths)
SequenceString: MTVAYSLENL KKISNSLVGD QLAKVDYFLA PKCQIFQCLL SIEQSDGVEL KNAKLDLLYT LLHLEPQQRD IVGTYYFDIV SAIYKSMSL ASSFTKNNSS TNYKYIKLLN LCAGVYPNCG FPDLQYLQNG FIQLVNHKFL RSKCKIDEVV TIIELLKLFL L VDEKNCSD ...String:
MTVAYSLENL KKISNSLVGD QLAKVDYFLA PKCQIFQCLL SIEQSDGVEL KNAKLDLLYT LLHLEPQQRD IVGTYYFDIV SAIYKSMSL ASSFTKNNSS TNYKYIKLLN LCAGVYPNCG FPDLQYLQNG FIQLVNHKFL RSKCKIDEVV TIIELLKLFL L VDEKNCSD FNKSKFMEEE REVTETSHYQ DFKMAESLEH IIVKISSKYL DQISLKYIVR LKVSRPASPS SVKNDPFDNK GV DCTRAIP KKINISNMYD SSLLSLALLL YLRYHYMIPG DRKLRNDATF KMFVLGLLKS NDVNIRCVAL KFLLQPYFTE DKK WEDTRT LEKILPYLVK SFNYDPLPWW FDPFDMLDSL IVLYNEITPM NNPVLTTLAH TNVIFCILSR FAQCLSLPQH NEAT LKTTT KFIKICASFA ASDEKYRLLL LNDTLLLNHL EYGLESHITL IQDFISLKDE IKETTTESHS MCLPPIYDHD FVAAW LLLL KSFSRSVSAL RTTLKRNKIA QLLLQILSKT YTLTKECYFA GQDFMKPEIM IMGITLGSIC NFVVEFSNLQ SFMLRN GII DIIEKMLTDP LFNSKKAWDD NEDERRIALQ GIPVHEVKAN SLWVLRHLMY NCQNEEKFQL LAKIPMNLIL DFINDPC WA VQAQCFQLLR NLTCNSRKIV NILLEKFKDV EYKIDPQTGN KISIGSTYLF EFLAKKMRLL NPLDTQQKKA MEGILYII V NLAAVNENKK QLVIEQDEIL NIMSEILVET TTDSSSYGND SNLKLACLWV LNNLLWNSSV SHYTQYAIEN GLEPGHSPS DSENPQSTVT IGYNESVAGG YSRGKYYDEP DGDDSSSNAN DDEDDDNDEG DDEGDEFVRT PAAKGSTSNV QVTRATVERC RKLVEVGLY DLVRKNITDE SLSVREKART LLYHMDLLLK VK

-
Macromolecule #2: Glucose-induced degradation protein 8

MacromoleculeName: Glucose-induced degradation protein 8 / type: protein_or_peptide / ID: 2 / Number of copies: 1 / Enantiomer: LEVO
Source (natural)Organism: Saccharomyces cerevisiae S288c (yeast)
Molecular weightTheoretical: 51.789152 KDa
Recombinant expressionOrganism: Spodoptera aff. frugiperda 1 BOLD-2017 (butterflies/moths)
SequenceString: MTISTLSNET TKSGSCSGQG KNGGKDFTYG KKCFTKEEWK EQVAKYSAMG ELYANKTIHY PLKIQPNSSG GSQDEGFATI QTTPIEPTL PRLLLNYFVS MAYEDSSIRM AKELGFIRNN KDIAVFNDLY KIKERFHIKH LIKLGRINEA MEEINSIFGL E VLEETFNA ...String:
MTISTLSNET TKSGSCSGQG KNGGKDFTYG KKCFTKEEWK EQVAKYSAMG ELYANKTIHY PLKIQPNSSG GSQDEGFATI QTTPIEPTL PRLLLNYFVS MAYEDSSIRM AKELGFIRNN KDIAVFNDLY KIKERFHIKH LIKLGRINEA MEEINSIFGL E VLEETFNA TGSYTGRTDR QQQQQQQQFD IDGDLHFKLL LLNLIEMIRS HHQQENITKD SNDFILNLIQ YSQNKLAIKA SS SVKKMQE LELAMTLLLF PLSDSADSGS IKLPKSLQNL YSISLRSKIA DLVNEKLLKF IHPRIQFEIS NNNSKFPDLL NSD KKIITQ NFTVYNNNLV NGSNGTKITH ISSDQPINEK MSSNEVTAAA NSVWLNQRDG NVGTGSAATT FHNLENKNYW NQTS ELLSS SNGKEKGLEF NNYYSSEFPY EPRLTQIMKL WCWCENQLHH NQIGVPRVEN

-
Macromolecule #3: Vacuolar import and degradation protein 30,Vacuolar import and de...

MacromoleculeName: Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and ...Name: Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30,Vacuolar import and degradation protein 30
type: protein_or_peptide / ID: 3 / Number of copies: 1 / Enantiomer: LEVO
Source (natural)Organism: Saccharomyces cerevisiae S288c (yeast)
Molecular weightTheoretical: 117.308906 KDa
Recombinant expressionOrganism: Spodoptera aff. frugiperda 1 BOLD-2017 (butterflies/moths)
SequenceString: MSEYMDDVDR EFINCLFPSY LLQQPVAYDL WILYLQHRKL FHKLKNTNLI NADENPTGVG MGRTKLTALT RKEIWSKLMN LGVLGTISF EAVNDDYLIQ VYKYFYPDVN DFTLRFGVKD SNKNSVRVMK ASSDMRKNAQ ELLEPVLSER EMALNSNTSL E NDRNDDDD ...String:
MSEYMDDVDR EFINCLFPSY LLQQPVAYDL WILYLQHRKL FHKLKNTNLI NADENPTGVG MGRTKLTALT RKEIWSKLMN LGVLGTISF EAVNDDYLIQ VYKYFYPDVN DFTLRFGVKD SNKNSVRVMK ASSDMRKNAQ ELLEPVLSER EMALNSNTSL E NDRNDDDD DDDDDDDDDD DDDDDDDESD LESLEGEVDT DTDDNNEGDG SDNHEEGGEE GSRGADADVS SAQQRAERVA DP WIYQRSR SAINIETESR NLWDTSDKNS GLQYYPPDQS PSSSFSSPRV SSGNDKNDNE ATNVLSNSGS KKKNSMIPDI YKI LGYFLP SRWQAQPNNS LQLSQDGITH LQPNPDYHSY MTYERSSASS ASTRNRLRTS FENSGKVDFA VTWANKSLPD NKLT IFYYE IKVLSVTSTE SAENSNIVIG YKLVENELME ATTKKSVSRS SVAGSSSSLG GSNNMSSNRV PSTSFTMEGT QRRDY IYEG GVSAMSLNVD GSINKCQKYG FDLNVFGYCG FDGLITNSTE QSKEYAKPFG RDDVIGCGIN FIDGSIFFTK NGIHLG NAF TDLNDLEFVP YVALRPGNSI KTNFGLNEDF VFDIIGYQDK WKSLAYEHIC RGRQMDVSIE EFDSDESEED ETENGPE EN KSTNVNEDLM DIDQEDGAAG NKDTKKLNDE KDNNLKFLLG EDNRFIDGKL VRPDVNNINN LSVDDGSLPN TLNVMIND Y LIHEGLVDVA KGFLKDLQKD AVNVNGQHSE SKDVIRHNER QIMKEERMVK IRQELRYLIN KGQISKCINY IDNEIPDLL KNNLELVFEL KLANYLVMIK KSSSKDDDEI ENLILKGQEL SNEFIYDTKI PQSLRDRFSG QLSNVSALLA YSNPLVEAPK EISGYLSDE YLQERLFQVS NNTILTFLHK DSECALENVI SNTRAMLSTL LEYNAFGSTN SSDPRYYKAI NFDEDVLNL (UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK) (UNK)(UNK)(UNK)(UNK)(UNK)(UNK) (UNK)(UNK)(UNK) (UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK) (UNK)(UNK)(UNK) (UNK)(UNK)(UNK)(UNK)(UNK)(UNK) (UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK) (UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK) (UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK) (UNK)(UNK) (UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK) (UNK)(UNK)(UNK)(UNK) (UNK)(UNK)(UNK)(UNK)(UNK) (UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK) (UNK) (UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK) (UNK)(UNK)

-
Macromolecule #4: Vacuolar import and degradation protein 24

MacromoleculeName: Vacuolar import and degradation protein 24 / type: protein_or_peptide / ID: 4 / Number of copies: 1 / Enantiomer: LEVO
Source (natural)Organism: Saccharomyces cerevisiae S288c (yeast)
Molecular weightTheoretical: 41.291934 KDa
Recombinant expressionOrganism: Spodoptera aff. frugiperda 1 BOLD-2017 (butterflies/moths)
SequenceString: MINNPKVDSV AEKPKAVTSK QSEQAASPEP TPAPPVSRNQ YPITFNLTST APFHLHDRHR YLQEQDLYKC ASRDSLSSLQ QLAHTPNGS TRKKYIVEDQ SPYSSENPVI VTSSYNHTVC TNYLRPRMQF TGYQISGYKR YQVTVNLKTV DLPKKDCTSL S PHLSGFLS ...String:
MINNPKVDSV AEKPKAVTSK QSEQAASPEP TPAPPVSRNQ YPITFNLTST APFHLHDRHR YLQEQDLYKC ASRDSLSSLQ QLAHTPNGS TRKKYIVEDQ SPYSSENPVI VTSSYNHTVC TNYLRPRMQF TGYQISGYKR YQVTVNLKTV DLPKKDCTSL S PHLSGFLS IRGLTNQHPE ISTYFEAYAV NHKELGFLSS SWKDEPVLNE FKATDQTDLE HWINFPSFRQ LFLMSQKNGL NS TDDNGTT NAAKKLPPQQ LPTTPSADAG NISRIFSQEK QFDNYLNERF IFMKWKEKFL VPDALLMEGV DGASYDGFYY IVH DQVTGN IQGFYYHQDA EKFQQLELVP SLKNKVESSD CSFEFA

-
Macromolecule #5: Protein FYV10,Protein FYV10,Protein FYV10,Protein FYV10,Protein F...

MacromoleculeName: Protein FYV10,Protein FYV10,Protein FYV10,Protein FYV10,Protein FYV10,Protein FYV10,Protein FYV10
type: protein_or_peptide / ID: 5 / Number of copies: 1 / Enantiomer: LEVO / EC number: RING-type E3 ubiquitin transferase
Source (natural)Organism: Saccharomyces cerevisiae S288c (yeast)
Molecular weightTheoretical: 54.432879 KDa
Recombinant expressionOrganism: Spodoptera aff. frugiperda 1 BOLD-2017 (butterflies/moths)
SequenceString: MAEKSIFNEP DVDFHLKLNQ QLFHIPYELL SKRIKHTQAV INKETKSLHE HTAALNQIFE HNDVEHDELA LAKITEMIRK VDHIERFLN TQIKSYCQIL NRIKKRLEFF HELKDIKSQN SGTSHNGNNE GTRTKLIQWY QSYTNILIGD YLTRNNPIKY N SETKDHWN ...String:
MAEKSIFNEP DVDFHLKLNQ QLFHIPYELL SKRIKHTQAV INKETKSLHE HTAALNQIFE HNDVEHDELA LAKITEMIRK VDHIERFLN TQIKSYCQIL NRIKKRLEFF HELKDIKSQN SGTSHNGNNE GTRTKLIQWY QSYTNILIGD YLTRNNPIKY N SETKDHWN SGVVFLKQSQ LDDLIDYDVL LEANRISTSL LHERNLLPLI SWINENKKTL TKKSSILEFQ ARLQEYIELL KV DNYTDAI VCFQRFLLPF VKSNFTDLKL ASGLLIFIKY CNDQKPTSST SSGFDTEEIK SQSLPMKKDR IFQHFFHKSL PRI TSKPAV NTTDYDKSSL INLQSGDFER YLNLLDDQRW SVLNDLFLSD FYSMYGISQN DPLLIYLSLG ISSLKTRDCL HPSD DENGN QETETATTAE KEVEDLQLFT LHSLKR(UNK)(UNK)(UNK)(UNK) (UNK)(UNK)(UNK)(UNK)(UNK) (UNK)(UNK)(UNK)(UNK) (UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK) (UNK)(UNK) (UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK) (UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK) (UNK)(UNK)(UNK)(UNK)(UNK)(UNK)(UNK)

-
Experimental details

-
Structure determination

Methodcryo EM
Processingsingle particle reconstruction
Aggregation stateparticle

-
Sample preparation

Concentration0.25 mg/mL
BufferpH: 6.5
VitrificationCryogen name: ETHANE

-
Electron microscopy

MicroscopeFEI TITAN KRIOS
Electron beamAcceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN
Electron opticsIllumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELDBright-field microscopy
Image recordingFilm or detector model: GATAN K3 BIOQUANTUM (6k x 4k) / Average electron dose: 54.48 e/Å2
Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company

-
Image processing

Startup modelType of model: OTHER
Details: An initial model generated by the Relion initial model program
Initial angle assignmentType: MAXIMUM LIKELIHOOD
Final angle assignmentType: MAXIMUM LIKELIHOOD
Final reconstructionApplied symmetry - Point group: C1 (asymmetric) / Resolution.type: BY AUTHOR / Resolution: 3.2 Å / Resolution method: FSC 0.143 CUT-OFF / Software - Name: RELION (ver. 3.0) / Number images used: 122248
FSC plot (resolution estimation)

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more