[English] 日本語
Yorodumi
- EMDB-0772: H3-H3-H3 tri-nucleosome with the 30 base-pair linker DNA -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: EMDB / ID: EMD-0772
TitleH3-H3-H3 tri-nucleosome with the 30 base-pair linker DNA
Map dataH3-H3-H3 tri-nucleosome with the 30 base-pair linker DNA
Sample
  • Complex: H3-H3-H3 tri-nucleosome with the 30 base-pair linker DNA
Function / homology
Function and homology information


negative regulation of tumor necrosis factor-mediated signaling pathway / negative regulation of megakaryocyte differentiation / protein localization to CENP-A containing chromatin / Chromatin modifying enzymes / Replacement of protamines by nucleosomes in the male pronucleus / CENP-A containing nucleosome / epigenetic regulation of gene expression / Packaging Of Telomere Ends / Recognition and association of DNA glycosylase with site containing an affected purine / Cleavage of the damaged purine ...negative regulation of tumor necrosis factor-mediated signaling pathway / negative regulation of megakaryocyte differentiation / protein localization to CENP-A containing chromatin / Chromatin modifying enzymes / Replacement of protamines by nucleosomes in the male pronucleus / CENP-A containing nucleosome / epigenetic regulation of gene expression / Packaging Of Telomere Ends / Recognition and association of DNA glycosylase with site containing an affected purine / Cleavage of the damaged purine / Deposition of new CENPA-containing nucleosomes at the centromere / Recognition and association of DNA glycosylase with site containing an affected pyrimidine / Cleavage of the damaged pyrimidine / Inhibition of DNA recombination at telomere / Meiotic synapsis / telomere organization / RNA Polymerase I Promoter Opening / Interleukin-7 signaling / SUMOylation of chromatin organization proteins / Assembly of the ORC complex at the origin of replication / DNA methylation / Condensation of Prophase Chromosomes / HCMV Late Events / SIRT1 negatively regulates rRNA expression / Chromatin modifications during the maternal to zygotic transition (MZT) / ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression / innate immune response in mucosa / PRC2 methylates histones and DNA / Defective pyroptosis / HDACs deacetylate histones / RNA Polymerase I Promoter Escape / Nonhomologous End-Joining (NHEJ) / lipopolysaccharide binding / Transcriptional regulation by small RNAs / Formation of the beta-catenin:TCF transactivating complex / RUNX1 regulates genes involved in megakaryocyte differentiation and platelet function / Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3 / NoRC negatively regulates rRNA expression / G2/M DNA damage checkpoint / B-WICH complex positively regulates rRNA expression / HDMs demethylate histones / DNA Damage/Telomere Stress Induced Senescence / Metalloprotease DUBs / PKMTs methylate histone lysines / RMTs methylate histone arginines / Meiotic recombination / Pre-NOTCH Transcription and Translation / nucleosome assembly / Activation of anterior HOX genes in hindbrain development during early embryogenesis / HCMV Early Events / structural constituent of chromatin / Transcriptional regulation of granulopoiesis / UCH proteinases / nucleosome / antimicrobial humoral immune response mediated by antimicrobial peptide / E3 ubiquitin ligases ubiquitinate target proteins / Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at DNA double strand breaks / gene expression / RUNX1 regulates transcription of genes involved in differentiation of HSCs / chromatin organization / Factors involved in megakaryocyte development and platelet production / Processing of DNA double-strand break ends / HATs acetylate histones / antibacterial humoral response / Senescence-Associated Secretory Phenotype (SASP) / Oxidative Stress Induced Senescence / killing of cells of another organism / Estrogen-dependent gene expression / defense response to Gram-negative bacterium / chromosome, telomeric region / Ub-specific processing proteases / defense response to Gram-positive bacterium / cadherin binding / Amyloid fiber formation / protein heterodimerization activity / negative regulation of cell population proliferation / protein-containing complex / DNA binding / extracellular space / RNA binding / extracellular exosome / extracellular region / nucleoplasm / membrane / nucleus / cytosol
Similarity search - Function
Histone H2B signature. / Histone H2B / Histone H2B / Histone H2A conserved site / Histone H2A signature. / Histone H2A, C-terminal domain / C-terminus of histone H2A / Histone H2A / Histone 2A / Histone H4, conserved site ...Histone H2B signature. / Histone H2B / Histone H2B / Histone H2A conserved site / Histone H2A signature. / Histone H2A, C-terminal domain / C-terminus of histone H2A / Histone H2A / Histone 2A / Histone H4, conserved site / Histone H4 signature. / Histone H4 / Histone H4 / CENP-T/Histone H4, histone fold / Centromere kinetochore component CENP-T histone fold / TATA box binding protein associated factor / TATA box binding protein associated factor (TAF), histone-like fold domain / Histone H3 signature 1. / Histone H3 signature 2. / Histone H3 / Histone H3/CENP-A / Histone H2A/H2B/H3 / Core histone H2A/H2B/H3/H4 / Histone-fold
Similarity search - Domain/homology
Histone H2A type 1-B/E / Histone H2B type 1-J / Histone H4 / Histone H3.1
Similarity search - Component
Biological speciesHomo sapiens (human)
Methodsingle particle reconstruction / cryo EM / Resolution: 15.7 Å
AuthorsTakizawa Y / Ho C-H / Tachiwana H / Ohi M / Wolf M / Kurumizaka H
Funding support Japan, 6 items
OrganizationGrant numberCountry
Japan Society for the Promotion of ScienceJP18H05534 Japan
Japan Society for the Promotion of ScienceJP17H05013 Japan
Japan Society for the Promotion of ScienceJP17H01408 Japan
Japan Society for the Promotion of Science15H05972 Japan
Japan Society for the Promotion of Science17H06167 Japan
Japan Society for the Promotion of ScienceJP19K06522 Japan
CitationJournal: Structure / Year: 2020
Title: Cryo-EM Structures of Centromeric Tri-nucleosomes Containing a Central CENP-A Nucleosome.
Authors: Yoshimasa Takizawa / Cheng-Han Ho / Hiroaki Tachiwana / Hideyuki Matsunami / Wataru Kobayashi / Midori Suzuki / Yasuhiro Arimura / Tetsuya Hori / Tatsuo Fukagawa / Melanie D Ohi / Matthias ...Authors: Yoshimasa Takizawa / Cheng-Han Ho / Hiroaki Tachiwana / Hideyuki Matsunami / Wataru Kobayashi / Midori Suzuki / Yasuhiro Arimura / Tetsuya Hori / Tatsuo Fukagawa / Melanie D Ohi / Matthias Wolf / Hitoshi Kurumizaka /
Abstract: The histone H3 variant CENP-A is a crucial epigenetic marker for centromere specification. CENP-A forms a characteristic nucleosome and dictates the higher-order configuration of centromeric ...The histone H3 variant CENP-A is a crucial epigenetic marker for centromere specification. CENP-A forms a characteristic nucleosome and dictates the higher-order configuration of centromeric chromatin. However, little is known about how the CENP-A nucleosome affects the architecture of centromeric chromatin. In this study, we reconstituted tri-nucleosomes mimicking a centromeric nucleosome arrangement containing the CENP-A nucleosome, and determined their 3D structures by cryoelectron microscopy. The H3-CENP-A-H3 tri-nucleosomes adopt an untwisted architecture, with an outward-facing linker DNA path between nucleosomes. This is distinct from the H3-H3-H3 tri-nucleosome architecture, with an inward-facing DNA path. Intriguingly, the untwisted architecture may allow the CENP-A nucleosome to be exposed to the solvent in the condensed chromatin model. These results provide a structural basis for understanding the 3D configuration of CENP-A-containing chromatin, and may explain how centromeric proteins can specifically target the CENP-A nucleosomes buried in robust amounts of H3 nucleosomes in centromeres.
History
DepositionAug 24, 2019-
Header (metadata) releaseDec 4, 2019-
Map releaseDec 4, 2019-
UpdateDec 4, 2019-
Current statusDec 4, 2019Processing site: PDBj / Status: Released

-
Structure visualization

Movie
  • Surface view with section colored by density value
  • Surface level: 3.6
  • Imaged by UCSF Chimera
  • Download
  • Surface view colored by cylindrical radius
  • Surface level: 3.6
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerEM map:
SurfViewMolmilJmol/JSmol
Supplemental images

Downloads & links

-
Map

FileDownload / File: emd_0772.map.gz / Format: CCP4 / Size: 83.7 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES)
AnnotationH3-H3-H3 tri-nucleosome with the 30 base-pair linker DNA
Voxel sizeX=Y=Z: 1.4 Å
Density
Contour LevelBy AUTHOR: 3.6 / Movie #1: 3.6
Minimum - Maximum-4.573675 - 16.096634
Average (Standard dev.)0.00000000659 (±1)
SymmetrySpace group: 1
Details

EMDB XML:

Map geometry
Axis orderXYZ
Origin000
Dimensions280280280
Spacing280280280
CellA=B=C: 392.0 Å
α=β=γ: 90.0 °

CCP4 map header:

modeImage stored as Reals
Å/pix. X/Y/Z1.41.41.4
M x/y/z280280280
origin x/y/z0.0000.0000.000
length x/y/z392.000392.000392.000
α/β/γ90.00090.00090.000
MAP C/R/S123
start NC/NR/NS000
NC/NR/NS280280280
D min/max/mean-4.57416.0970.000

-
Supplemental data

-
Sample components

-
Entire : H3-H3-H3 tri-nucleosome with the 30 base-pair linker DNA

EntireName: H3-H3-H3 tri-nucleosome with the 30 base-pair linker DNA
Components
  • Complex: H3-H3-H3 tri-nucleosome with the 30 base-pair linker DNA

-
Supramolecule #1: H3-H3-H3 tri-nucleosome with the 30 base-pair linker DNA

SupramoleculeName: H3-H3-H3 tri-nucleosome with the 30 base-pair linker DNA
type: complex / ID: 1 / Parent: 0
Source (natural)Organism: Homo sapiens (human)
Recombinant expressionOrganism: Escherichia coli (E. coli)
Molecular weightTheoretical: 600 KDa

-
Experimental details

-
Structure determination

Methodcryo EM
Processingsingle particle reconstruction
Aggregation stateparticle

-
Sample preparation

Concentration0.03 mg/mL
BufferpH: 7.8
VitrificationCryogen name: ETHANE / Chamber humidity: 100 % / Instrument: FEI VITROBOT MARK IV

-
Electron microscopy

MicroscopeFEI TALOS ARCTICA
Electron beamAcceleration voltage: 200 kV / Electron source: FIELD EMISSION GUN
Electron opticsC2 aperture diameter: 50.0 µm / Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELDBright-field microscopy / Cs: 2.7 mm
Sample stageSpecimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER / Cooling holder cryogen: NITROGEN
Image recordingFilm or detector model: FEI FALCON III (4k x 4k) / Detector mode: INTEGRATING / Number grids imaged: 1 / Number real images: 8035 / Average exposure time: 1.0 sec. / Average electron dose: 25.0 e/Å2
Experimental equipment
Model: Talos Arctica / Image courtesy: FEI Company

-
Image processing

Particle selectionNumber selected: 109525
CTF correctionSoftware - Name: CTFFIND
Startup modelType of model: OTHER / Details: Cylinder generated by SPIDER
Initial angle assignmentType: MAXIMUM LIKELIHOOD / Software - Name: RELION
Final 3D classificationSoftware - Name: RELION
Final angle assignmentType: MAXIMUM LIKELIHOOD / Software - Name: RELION
Final reconstructionApplied symmetry - Point group: C2 (2 fold cyclic) / Resolution.type: BY AUTHOR / Resolution: 15.7 Å / Resolution method: FSC 0.143 CUT-OFF / Software - Name: RELION / Number images used: 4534
FSC plot (resolution estimation)

-
Atomic model buiding 1

RefinementProtocol: RIGID BODY FIT

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more