[English] 日本語
Yorodumi
- PDB-8hwl: Human Pyruvate Carboxylase -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 8hwl
TitleHuman Pyruvate Carboxylase
ComponentsPyruvate carboxylase, mitochondrial
KeywordsCYTOSOLIC PROTEIN / PC / Mitochondrial
Function / homology
Function and homology information


pyruvate carboxylase / pyruvate carboxylase activity / Defective HLCS causes multiple carboxylase deficiency / Biotin transport and metabolism / viral RNA genome packaging / NADP metabolic process / Pyruvate metabolism / positive regulation by host of viral process / Gluconeogenesis / NADH metabolic process ...pyruvate carboxylase / pyruvate carboxylase activity / Defective HLCS causes multiple carboxylase deficiency / Biotin transport and metabolism / viral RNA genome packaging / NADP metabolic process / Pyruvate metabolism / positive regulation by host of viral process / Gluconeogenesis / NADH metabolic process / pyruvate metabolic process / biotin binding / viral release from host cell / gluconeogenesis / lipid metabolic process / mitochondrial matrix / negative regulation of gene expression / mitochondrion / ATP binding / identical protein binding / metal ion binding / cytosol / cytoplasm
Similarity search - Function
Pyruvate carboxylase / Carboxylase, conserved domain / Conserved carboxylase domain / Pyruvate carboxyltransferase / HMGL-like / Pyruvate carboxyltransferase domain. / Biotin-binding site / Biotin-requiring enzymes attachment site. / Biotin carboxylase-like, N-terminal domain / Biotin carboxylase, C-terminal ...Pyruvate carboxylase / Carboxylase, conserved domain / Conserved carboxylase domain / Pyruvate carboxyltransferase / HMGL-like / Pyruvate carboxyltransferase domain. / Biotin-binding site / Biotin-requiring enzymes attachment site. / Biotin carboxylase-like, N-terminal domain / Biotin carboxylase, C-terminal / Biotin carboxylation domain / Biotin carboxylase, N-terminal domain / Biotin carboxylase C-terminal domain / Biotin carboxylation domain profile. / Biotin carboxylase C-terminal domain / Carbamoyl-phosphate synthetase large subunit-like, ATP-binding domain / Carbamoyl-phosphate synthase L chain, ATP binding domain / Biotin-requiring enzyme / Rudiment single hybrid motif / Biotinyl/lipoyl domain profile. / Biotin/lipoyl attachment / Single hybrid motif / Pre-ATP-grasp domain superfamily / ATP-grasp fold / ATP-grasp fold profile. / Aldolase-type TIM barrel
Similarity search - Domain/homology
Chem-BTI / Pyruvate carboxylase, mitochondrial
Similarity search - Component
Biological speciesHomo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 5.63 Å
AuthorsLiu, D.S. / Su, J.Y.
Funding support China, 1items
OrganizationGrant numberCountry
National Natural Science Foundation of China (NSFC)32071192 China
CitationJournal: Nat Struct Mol Biol / Year: 2024
Title: Structural insight into synergistic activation of human 3-methylcrotonyl-CoA carboxylase.
Authors: Jiayue Su / Xuyang Tian / Hang Cheng / Desheng Liu / Ziyi Wang / Shan Sun / Hong-Wei Wang / Sen-Fang Sui /
Abstract: The enzymes 3-methylcrotonyl-coenzyme A (CoA) carboxylase (MCC), pyruvate carboxylase and propionyl-CoA carboxylase belong to the biotin-dependent carboxylase family located in mitochondria. They ...The enzymes 3-methylcrotonyl-coenzyme A (CoA) carboxylase (MCC), pyruvate carboxylase and propionyl-CoA carboxylase belong to the biotin-dependent carboxylase family located in mitochondria. They participate in various metabolic pathways in human such as amino acid metabolism and tricarboxylic acid cycle. Many human diseases are caused by mutations in those enzymes but their structures have not been fully resolved so far. Here we report an optimized purification strategy to obtain high-resolution structures of intact human endogenous MCC, propionyl-CoA carboxylase and pyruvate carboxylase in different conformational states. We also determine the structures of MCC bound to different substrates. Analysis of MCC structures in different states reveals the mechanism of the substrate-induced, multi-element synergistic activation of MCC. These results provide important insights into the catalytic mechanism of the biotin-dependent carboxylase family and are of great value for the development of new drugs for the treatment of related diseases.
History
DepositionDec 30, 2022Deposition site: PDBJ / Processing site: PDBJ
Revision 1.0Jan 31, 2024Provider: repository / Type: Initial release
Revision 1.1Nov 27, 2024Group: Data collection / Database references / Structure summary
Category: citation / citation_author ...citation / citation_author / em_admin / pdbx_entry_details
Item: _citation.country / _citation.journal_abbrev ..._citation.country / _citation.journal_abbrev / _citation.journal_id_CSD / _citation.journal_id_ISSN / _citation.pdbx_database_id_DOI / _citation.pdbx_database_id_PubMed / _citation.title / _citation.year / _em_admin.last_update / _pdbx_entry_details.has_protein_modification

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Pyruvate carboxylase, mitochondrial
B: Pyruvate carboxylase, mitochondrial
C: Pyruvate carboxylase, mitochondrial
E: Pyruvate carboxylase, mitochondrial
hetero molecules


Theoretical massNumber of molelcules
Total (without water)520,1118
Polymers519,1974
Non-polymers9134
Water00
1


  • Idetical with deposited unit
  • defined by author&software
  • Evidence: gel filtration
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1

-
Components

#1: Protein
Pyruvate carboxylase, mitochondrial / Pyruvic carboxylase / PCB


Mass: 129799.359 Da / Num. of mol.: 4
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: PC / Production host: Homo sapiens (human) / References: UniProt: P11498, pyruvate carboxylase
#2: Chemical
ChemComp-BTI / 5-(HEXAHYDRO-2-OXO-1H-THIENO[3,4-D]IMIDAZOL-6-YL)PENTANAL


Mass: 228.311 Da / Num. of mol.: 4 / Source method: obtained synthetically / Formula: C10H16N2O2S / Feature type: SUBJECT OF INVESTIGATION
Has ligand of interestY
Has protein modificationN

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Pyruvate carboxylase / Type: COMPLEX / Entity ID: #1 / Source: NATURAL
Source (natural)Organism: Homo sapiens (human)
Buffer solutionpH: 8
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD / Nominal defocus max: 1800 nm / Nominal defocus min: 1300 nm
Image recordingElectron dose: 50 e/Å2 / Film or detector model: GATAN K3 (6k x 4k)

-
Processing

CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 5.63 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 21450 / Symmetry type: POINT

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more