[English] 日本語
Yorodumi
- EMDB-25907: Structure of Leucine Rich Repeat Kinase 2's ROC domain interactin... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: EMDB / ID: EMD-25907
TitleStructure of Leucine Rich Repeat Kinase 2's ROC domain interacting with the microtubule facing the plus end
Map dataSharpened map
Sample
  • Complex: LRRK2RCKW filament bound to a 11-pf microtubule with MLi-2 present
    • Protein or peptide: Leucine-rich repeat serine/threonine-protein kinase 2
  • Ligand: GUANOSINE-5'-DIPHOSPHATE
Function / homology
Function and homology information


peroxidase inhibitor activity / caveola neck / negative regulation of thioredoxin peroxidase activity by peptidyl-threonine phosphorylation / negative regulation of protein processing involved in protein targeting to mitochondrion / Wnt signalosome assembly / beta-catenin destruction complex binding / regulation of branching morphogenesis of a nerve / regulation of kidney size / regulation of neuron maturation / tangential migration from the subventricular zone to the olfactory bulb ...peroxidase inhibitor activity / caveola neck / negative regulation of thioredoxin peroxidase activity by peptidyl-threonine phosphorylation / negative regulation of protein processing involved in protein targeting to mitochondrion / Wnt signalosome assembly / beta-catenin destruction complex binding / regulation of branching morphogenesis of a nerve / regulation of kidney size / regulation of neuron maturation / tangential migration from the subventricular zone to the olfactory bulb / protein localization to endoplasmic reticulum exit site / GTP-dependent protein kinase activity / regulation of neuroblast proliferation / regulation of ER to Golgi vesicle-mediated transport / regulation of synaptic vesicle transport / negative regulation of late endosome to lysosome transport / regulation of mitochondrial depolarization / negative regulation of protein targeting to mitochondrion / positive regulation of dopamine receptor signaling pathway / regulation of lysosomal lumen pH / regulation of CAMKK-AMPK signaling cascade / amphisome / mitochondrion localization / cytoplasmic side of mitochondrial outer membrane / multivesicular body, internal vesicle / co-receptor binding / regulation of retrograde transport, endosome to Golgi / negative regulation of excitatory postsynaptic potential / negative regulation of autophagosome assembly / regulation of dopamine receptor signaling pathway / positive regulation of microglial cell activation / neuron projection arborization / positive regulation of synaptic vesicle endocytosis / JUN kinase kinase kinase activity / olfactory bulb development / regulation of dendritic spine morphogenesis / regulation of protein kinase A signaling / striatum development / protein localization to mitochondrion / cellular response to dopamine / presynaptic cytosol / positive regulation of protein autoubiquitination / endoplasmic reticulum organization / Wnt signalosome / GTP metabolic process / positive regulation of programmed cell death / regulation of canonical Wnt signaling pathway / negative regulation of protein processing / syntaxin-1 binding / regulation of reactive oxygen species metabolic process / exploration behavior / negative regulation of GTPase activity / protein kinase A binding / regulation of locomotion / autolysosome / regulation of synaptic vesicle exocytosis / Golgi-associated vesicle / PTK6 promotes HIF1A stabilization / clathrin binding / negative regulation of macroautophagy / lysosome organization / regulation of mitochondrial fission / neuromuscular junction development / locomotory exploration behavior / intracellular distribution of mitochondria / Golgi organization / positive regulation of nitric-oxide synthase biosynthetic process / microvillus / Rho protein signal transduction / cellular response to organic cyclic compound / MAP kinase kinase kinase activity / canonical Wnt signaling pathway / positive regulation of protein kinase activity / cellular response to manganese ion / endoplasmic reticulum exit site / positive regulation of autophagy / negative regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway / JNK cascade / regulation of synaptic transmission, glutamatergic / excitatory postsynaptic potential / cellular response to starvation / dendrite cytoplasm / regulation of membrane potential / mitochondrion organization / GTPase activator activity / tubulin binding / SNARE binding / neuron projection morphogenesis / negative regulation of protein phosphorylation / negative regulation of protein binding / positive regulation of protein ubiquitination / regulation of autophagy / calcium-mediated signaling / determination of adult lifespan / mitochondrial membrane / Hydrolases; Acting on acid anhydrides; Acting on GTP to facilitate cellular and subcellular movement / peptidyl-threonine phosphorylation / regulation of protein stability / positive regulation of MAP kinase activity / trans-Golgi network
Similarity search - Function
C-terminal of Roc (COR) domain / C-terminal of Roc, COR, domain / Ras of Complex, Roc, domain of DAPkinase / Roc domain profile. / Roc domain / Leucine-rich repeats, bacterial type / Leucine rich repeat / Leucine-rich repeat, typical subtype / Leucine-rich repeats, typical (most populated) subfamily / Leucine-rich repeat profile. ...C-terminal of Roc (COR) domain / C-terminal of Roc, COR, domain / Ras of Complex, Roc, domain of DAPkinase / Roc domain profile. / Roc domain / Leucine-rich repeats, bacterial type / Leucine rich repeat / Leucine-rich repeat, typical subtype / Leucine-rich repeats, typical (most populated) subfamily / Leucine-rich repeat profile. / Leucine-rich repeat / Rab subfamily of small GTPases / Leucine-rich repeat domain superfamily / Ankyrin repeat-containing domain superfamily / Armadillo-like helical / Small GTP-binding protein domain / Armadillo-type fold / WD40-repeat-containing domain superfamily / Serine/threonine-protein kinase, active site / Serine/Threonine protein kinases active-site signature. / WD40/YVTN repeat-like-containing domain superfamily / Protein kinase domain / Serine/Threonine protein kinases, catalytic domain / Protein kinase, ATP binding site / Protein kinases ATP-binding region signature. / Protein kinase domain profile. / Protein kinase domain / Protein kinase-like domain superfamily / P-loop containing nucleoside triphosphate hydrolase
Similarity search - Domain/homology
Leucine-rich repeat serine/threonine-protein kinase 2
Similarity search - Component
Biological speciesHomo sapiens (human)
Methodsingle particle reconstruction / cryo EM / Resolution: 5.0 Å
AuthorsMatyszewski M / Leschziner AE
Funding support United States, 4 items
OrganizationGrant numberCountry
Other privateASAP-000519 United States
Michael J. Fox Foundation18321 United States
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)R01GM121772 United States
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)R01GM107214 United States
CitationJournal: Nat Struct Mol Biol / Year: 2022
Title: Structural basis for Parkinson's disease-linked LRRK2's binding to microtubules.
Authors: David M Snead / Mariusz Matyszewski / Andrea M Dickey / Yu Xuan Lin / Andres E Leschziner / Samara L Reck-Peterson /
Abstract: Leucine-rich repeat kinase 2 (LRRK2) is one of the most commonly mutated genes in familial Parkinson's disease (PD). Under some circumstances, LRRK2 co-localizes with microtubules in cells, an ...Leucine-rich repeat kinase 2 (LRRK2) is one of the most commonly mutated genes in familial Parkinson's disease (PD). Under some circumstances, LRRK2 co-localizes with microtubules in cells, an association enhanced by PD mutations. We report a cryo-EM structure of the catalytic half of LRRK2, containing its kinase, in a closed conformation, and GTPase domains, bound to microtubules. We also report a structure of the catalytic half of LRRK1, which is closely related to LRRK2 but is not linked to PD. Although LRRK1's structure is similar to that of LRRK2, we find that LRRK1 does not interact with microtubules. Guided by these structures, we identify amino acids in LRRK2's GTPase that mediate microtubule binding; mutating them disrupts microtubule binding in vitro and in cells, without affecting LRRK2's kinase activity. Our results have implications for the design of therapeutic LRRK2 kinase inhibitors.
History
DepositionJan 12, 2022-
Header (metadata) releaseDec 28, 2022-
Map releaseDec 28, 2022-
UpdateDec 28, 2022-
Current statusDec 28, 2022Processing site: RCSB / Status: Released

-
Structure visualization

Supplemental images

Downloads & links

-
Map

FileDownload / File: emd_25907.map.gz / Format: CCP4 / Size: 103 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES)
AnnotationSharpened map
Voxel sizeX=Y=Z: 1.16 Å
Density
Contour LevelBy AUTHOR: 0.254
Minimum - Maximum-1.1120619 - 2.7757661
Average (Standard dev.)0.0058422643 (±0.059319537)
SymmetrySpace group: 1
Details

EMDB XML:

Map geometry
Axis orderXYZ
Origin000
Dimensions300300300
Spacing300300300
CellA=B=C: 348.0 Å
α=β=γ: 90.0 °

-
Supplemental data

-
Mask #1

Fileemd_25907_msk_1.map
Projections & Slices
AxesZYX

Projections

Slices (1/2)
Density Histograms

-
Additional map: Non-sharpened map

Fileemd_25907_additional_1.map
AnnotationNon-sharpened map
Projections & Slices
AxesZYX

Projections

Slices (1/2)
Density Histograms

-
Half map: Half map 1

Fileemd_25907_half_map_1.map
AnnotationHalf map 1
Projections & Slices
AxesZYX

Projections

Slices (1/2)
Density Histograms

-
Half map: Half map 2

Fileemd_25907_half_map_2.map
AnnotationHalf map 2
Projections & Slices
AxesZYX

Projections

Slices (1/2)
Density Histograms

-
Sample components

-
Entire : LRRK2RCKW filament bound to a 11-pf microtubule with MLi-2 present

EntireName: LRRK2RCKW filament bound to a 11-pf microtubule with MLi-2 present
Components
  • Complex: LRRK2RCKW filament bound to a 11-pf microtubule with MLi-2 present
    • Protein or peptide: Leucine-rich repeat serine/threonine-protein kinase 2
  • Ligand: GUANOSINE-5'-DIPHOSPHATE

-
Supramolecule #1: LRRK2RCKW filament bound to a 11-pf microtubule with MLi-2 present

SupramoleculeName: LRRK2RCKW filament bound to a 11-pf microtubule with MLi-2 present
type: complex / ID: 1 / Chimera: Yes / Parent: 0 / Macromolecule list: #1

-
Macromolecule #1: Leucine-rich repeat serine/threonine-protein kinase 2

MacromoleculeName: Leucine-rich repeat serine/threonine-protein kinase 2 / type: protein_or_peptide / ID: 1 / Number of copies: 1 / Enantiomer: LEVO / EC number: non-specific serine/threonine protein kinase
Source (natural)Organism: Homo sapiens (human)
Molecular weightTheoretical: 22.191762 KDa
Recombinant expressionOrganism: Spodoptera frugiperda (fall armyworm)
SequenceString: YNRMKLMIVG NTGSGKTTLL QQLMKTKKSD LGMQSATVGI DVKDWPIQIR DKRKRDLVLN VWDFAGREEF YSTHPHFMTQ RALYLAVYD LSKGQAEVDA MKPWLFNIKA RASSSPVILV GTHLDVSDEK QRKACMSKIT KELLNKRGFP AIRDYHFVNA T EESDALAK ...String:
YNRMKLMIVG NTGSGKTTLL QQLMKTKKSD LGMQSATVGI DVKDWPIQIR DKRKRDLVLN VWDFAGREEF YSTHPHFMTQ RALYLAVYD LSKGQAEVDA MKPWLFNIKA RASSSPVILV GTHLDVSDEK QRKACMSKIT KELLNKRGFP AIRDYHFVNA T EESDALAK LRKTIINESL NFKIRDQLVV GQLIPD

-
Macromolecule #2: GUANOSINE-5'-DIPHOSPHATE

MacromoleculeName: GUANOSINE-5'-DIPHOSPHATE / type: ligand / ID: 2 / Number of copies: 1 / Formula: GDP
Molecular weightTheoretical: 443.201 Da
Chemical component information

ChemComp-GDP:
GUANOSINE-5'-DIPHOSPHATE / GDP, energy-carrying molecule*YM / Guanosine diphosphate

-
Experimental details

-
Structure determination

Methodcryo EM
Processingsingle particle reconstruction
Aggregation statefilament

-
Sample preparation

BufferpH: 7.4
Component:
ConcentrationNameFormula
20.0 mMHEPES
80.0 mMSodium ChlorideNaClSodium chloride
0.5 mMTCEP
2.5 mMMagnesium ChlorideMgCl2
20.0 uMGDP

Details: This is the final dilution buffer. The incubation buffer consisted of 1x BRB80, 10% glycerol, 1mM DTT, 1mM GTP, 1mM MgCl2, 10 uM taxol, and 5 uM MLi-2. Sample was diluted 3-fold right before ...Details: This is the final dilution buffer. The incubation buffer consisted of 1x BRB80, 10% glycerol, 1mM DTT, 1mM GTP, 1mM MgCl2, 10 uM taxol, and 5 uM MLi-2. Sample was diluted 3-fold right before freezing with the final buffer.
GridModel: Homemade / Material: COPPER / Mesh: 300 / Support film - Material: CARBON / Support film - topology: LACEY / Pretreatment - Type: GLOW DISCHARGE / Pretreatment - Time: 45 sec.
Details: EMS LC-300 lacey grid used (not homemade, but can't choose EMS as the manufacturer)
VitrificationCryogen name: ETHANE / Chamber humidity: 100 % / Chamber temperature: 277 K
Details4.5 uM of LRRK2RCKW (I2020T) was allowed to incubate with 2.25 uM of tubulin dimer, causing both to co-polymerize. 5 uM of MLi-2 was present as well. The sample was diluted 3-fold right before freezing (1.5 uM LRRK2RCKW concentration final).

-
Electron microscopy

MicroscopeFEI TALOS ARCTICA
Electron beamAcceleration voltage: 200 kV / Electron source: FIELD EMISSION GUN
Electron opticsC2 aperture diameter: 70.0 µm / Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELDBright-field microscopy / Cs: 2.7 mm / Nominal defocus max: 1.5 µm / Nominal defocus min: 1.5 µm / Nominal magnification: 36000
Sample stageCooling holder cryogen: NITROGEN
Image recordingFilm or detector model: GATAN K2 SUMMIT (4k x 4k) / Detector mode: COUNTING / Number grids imaged: 2 / Average exposure time: 10.0 sec. / Average electron dose: 55.0 e/Å2 / Details: 250 ms frames
Experimental equipment
Model: Talos Arctica / Image courtesy: FEI Company

-
Image processing

Particle selectionNumber selected: 557577
Details: Filament Autopicker with templates created by manual picking. This is before symmetry expansion.
Startup modelType of model: NONE
Details: Featureless cylinder for the original helical reconstruction, then subunit from the helical reconstruction after reboxing and symmetry expansion.
Initial angle assignmentType: NOT APPLICABLE
Final angle assignmentType: NOT APPLICABLE
Final reconstructionApplied symmetry - Point group: C1 (asymmetric) / Resolution.type: BY AUTHOR / Resolution: 5.0 Å / Resolution method: FSC 0.143 CUT-OFF / Software - Name: cryoSPARC (ver. 3.2)
Software - details: local refinement, with non-uniform refinement turned off
Number images used: 99854
FSC plot (resolution estimation)

-
Atomic model buiding 1

DetailsUsed AlphaFold model as initial model (Q5S007) using only the ROC domain. TUB1 was added to the initial refinement to prevent ROC model from entering density reserved for the microtubule. TUB1 was discarded after the initial refinement.
RefinementProtocol: FLEXIBLE FIT
Output model

PDB-7thz:
Structure of Leucine Rich Repeat Kinase 2's ROC domain interacting with the microtubule facing the plus end

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more