[English] 日本語

- EMDB-19128: Structure of human eIF3 core from closed 48S translation initiati... -
+
Open data
-
Basic information
Entry | ![]() | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | Structure of human eIF3 core from closed 48S translation initiation complex | |||||||||
![]() | ||||||||||
![]() |
| |||||||||
![]() | RIBOSOME / TRANSLATION / initiation / 48S / eIF / human / eukaryotic / factor / codon / scanning / open / reading | |||||||||
Function / homology | ![]() positive regulation of mRNA binding / viral translational termination-reinitiation / eukaryotic translation initiation factor 3 complex, eIF3e / cap-dependent translational initiation / eukaryotic translation initiation factor 3 complex, eIF3m / IRES-dependent viral translational initiation / translation reinitiation / eukaryotic translation initiation factor 3 complex / formation of cytoplasmic translation initiation complex / cytoplasmic translational initiation ...positive regulation of mRNA binding / viral translational termination-reinitiation / eukaryotic translation initiation factor 3 complex, eIF3e / cap-dependent translational initiation / eukaryotic translation initiation factor 3 complex, eIF3m / IRES-dependent viral translational initiation / translation reinitiation / eukaryotic translation initiation factor 3 complex / formation of cytoplasmic translation initiation complex / cytoplasmic translational initiation / multi-eIF complex / eukaryotic 43S preinitiation complex / mRNA cap binding / eukaryotic 48S preinitiation complex / negative regulation of RNA splicing / metal-dependent deubiquitinase activity / nuclear-transcribed mRNA catabolic process, nonsense-mediated decay / regulation of translational initiation / rRNA modification in the nucleus and cytosol / Formation of the ternary complex, and subsequently, the 43S complex / erythrocyte homeostasis / cytoplasmic side of rough endoplasmic reticulum membrane / laminin receptor activity / Ribosomal scanning and start codon recognition / Translation initiation complex formation / SARS-CoV-1 modulates host translation machinery / Peptide chain elongation / Selenocysteine synthesis / Formation of a pool of free 40S subunits / Eukaryotic Translation Termination / Response of EIF2AK4 (GCN2) to amino acid deficiency / SRP-dependent cotranslational protein targeting to membrane / Viral mRNA Translation / Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) / GTP hydrolysis and joining of the 60S ribosomal subunit / L13a-mediated translational silencing of Ceruloplasmin expression / Major pathway of rRNA processing in the nucleolus and cytosol / Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) / laminin binding / translation regulator activity / translation initiation factor binding / Amplification of signal from unattached kinetochores via a MAD2 inhibitory signal / negative regulation of proteasomal ubiquitin-dependent protein catabolic process / translation initiation factor activity / negative regulation of translational initiation / antiviral innate immune response / Mitotic Prometaphase / EML4 and NUDC in mitotic spindle formation / cytosolic ribosome / Resolution of Sister Chromatid Cohesion / positive regulation of translation / erythrocyte differentiation / maturation of SSU-rRNA / small-subunit processome / translational initiation / RHO GTPases Activate Formins / Regulation of expression of SLITs and ROBOs / PML body / receptor tyrosine kinase binding / GABA-ergic synapse / mRNA 5'-UTR binding / negative regulation of ERK1 and ERK2 cascade / fibrillar center / Separation of Sister Chromatids / metallopeptidase activity / rRNA processing / ribosome biogenesis / presynapse / ribosome binding / virus receptor activity / ribosomal small subunit biogenesis / ribosomal small subunit assembly / small ribosomal subunit / small ribosomal subunit rRNA binding / cytosolic small ribosomal subunit / SARS-CoV-2 modulates host translation machinery / microtubule / ubiquitinyl hydrolase 1 / cysteine-type deubiquitinase activity / cytoplasmic translation / cell differentiation / postsynaptic density / structural constituent of ribosome / ribosome / cadherin binding / translation / ribonucleoprotein complex / focal adhesion / mRNA binding / synapse / negative regulation of apoptotic process / chromatin / nucleolus / glutamatergic synapse / structural molecule activity / endoplasmic reticulum / negative regulation of transcription by RNA polymerase II / proteolysis / DNA binding / RNA binding Similarity search - Function | |||||||||
Biological species | ![]() | |||||||||
Method | single particle reconstruction / cryo EM / Resolution: 3.4 Å | |||||||||
![]() | Petrychenko V / Yi S-H / Liedtke D / Peng BZ / Rodnina MV / Fischer N | |||||||||
Funding support | ![]()
| |||||||||
![]() | ![]() Title: Structural basis for translational control by the human 48S initiation complex. Authors: Valentyn Petrychenko / Sung-Hui Yi / David Liedtke / Bee-Zen Peng / Marina V Rodnina / Niels Fischer / ![]() Abstract: The selection of an open reading frame (ORF) for translation of eukaryotic mRNA relies on remodeling of the scanning 48S initiation complex into an elongation-ready 80S ribosome. Using cryo-electron ...The selection of an open reading frame (ORF) for translation of eukaryotic mRNA relies on remodeling of the scanning 48S initiation complex into an elongation-ready 80S ribosome. Using cryo-electron microscopy, we visualize the key commitment steps orchestrating 48S remodeling in humans. The mRNA Kozak sequence facilitates mRNA scanning in the 48S open state and stabilizes the 48S closed state by organizing the contacts of eukaryotic initiation factors (eIFs) and ribosomal proteins and by reconfiguring mRNA structure. GTPase-triggered large-scale fluctuations of 48S-bound eIF2 facilitate eIF5B recruitment, transfer of initiator tRNA from eIF2 to eIF5B and the release of eIF5 and eIF2. The 48S-bound multisubunit eIF3 complex controls ribosomal subunit joining by coupling eIF exchange to gradual displacement of the eIF3c N-terminal domain from the intersubunit interface. These findings reveal the structural mechanism of ORF selection in human cells and explain how eIF3 could function in the context of the 80S ribosome. | |||||||||
History |
|
-
Structure visualization
-
Downloads & links
-EMDB archive
Map data | ![]() | 47.8 MB | ![]() | |
---|---|---|---|---|
Header (meta data) | ![]() ![]() | 47.9 KB 47.9 KB | Display Display | ![]() |
FSC (resolution estimation) | ![]() | 8.5 KB | Display | ![]() |
Images | ![]() | 206.8 KB | ||
Masks | ![]() | 52.7 MB | ![]() | |
Filedesc metadata | ![]() | 13.3 KB | ||
Others | ![]() ![]() ![]() ![]() | 49.4 MB 40.6 MB 40.7 MB 40.7 MB | ||
Archive directory | ![]() ![]() | HTTPS FTP |
-Validation report
Summary document | ![]() | 846.4 KB | Display | ![]() |
---|---|---|---|---|
Full document | ![]() | 845.9 KB | Display | |
Data in XML | ![]() | 14.5 KB | Display | |
Data in CIF | ![]() | 20.6 KB | Display | |
Arichive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 8rg0MC ![]() 8pj1C ![]() 8pj2C ![]() 8pj3C ![]() 8pj4C ![]() 8pj5C ![]() 8pj6C M: atomic model generated by this map C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
EMDB pages | ![]() ![]() |
---|---|
Related items in Molecule of the Month |
-
Map
File | ![]() | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Voxel size | X=Y=Z: 1.16 Å | ||||||||||||||||||||
Density |
| ||||||||||||||||||||
Symmetry | Space group: 1 | ||||||||||||||||||||
Details | EMDB XML:
|
-Supplemental data
-
Sample components
+Entire : Human 48S initiation complex 40S-eIF1-eIF1A-eIF2-eIF3-tRNA-Met-mRNA
+Supramolecule #1: Human 48S initiation complex 40S-eIF1-eIF1A-eIF2-eIF3-tRNA-Met-mRNA
+Supramolecule #2: Human 48S initiation complex 40S-eIF1-eIF1A-eIF2-eIF3-tRNA-Met
+Supramolecule #3: mRNA
+Macromolecule #1: Eukaryotic translation initiation factor 3 subunit K
+Macromolecule #2: Eukaryotic translation initiation factor 3 subunit F
+Macromolecule #3: Eukaryotic translation initiation factor 3 subunit L
+Macromolecule #4: Eukaryotic translation initiation factor 3 subunit M
+Macromolecule #6: Eukaryotic translation initiation factor 3 subunit H
+Macromolecule #8: 40S ribosomal protein S27
+Macromolecule #9: 40S ribosomal protein S13
+Macromolecule #10: 40S ribosomal protein S17
+Macromolecule #11: 40S ribosomal protein SA
+Macromolecule #12: 40S ribosomal protein S3a
+Macromolecule #13: 40S ribosomal protein S14
+Macromolecule #14: 40S ribosomal protein S26
+Macromolecule #15: 40S ribosomal protein S28
+Macromolecule #16: Eukaryotic translation initiation factor 3 subunit A
+Macromolecule #17: Eukaryotic translation initiation factor 3 subunit E
+Macromolecule #18: Eukaryotic translation initiation factor 3 subunit D
+Macromolecule #19: Eukaryotic translation initiation factor 3 subunit C
+Macromolecule #5: mRNA
+Macromolecule #7: 18S rRNA
+Macromolecule #20: MAGNESIUM ION
+Macromolecule #21: ZINC ION
-Experimental details
-Structure determination
Method | cryo EM |
---|---|
![]() | single particle reconstruction |
Aggregation state | particle |
-
Sample preparation
Buffer | pH: 7.5 Component:
| ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vitrification | Cryogen name: ETHANE / Chamber humidity: 100 % / Chamber temperature: 277 K / Instrument: HOMEMADE PLUNGER / Details: Manual blotting & plunge-freezing. |
-
Electron microscopy
Microscope | FEI TITAN KRIOS |
---|---|
Specialist optics | Spherical aberration corrector: Electron-optical aberrations were corrected using a CETCOR Cs-corrector (CEOS, Heidelberg) aligned with the CETCORPLUS 4.6.9 software package (CEOS, Heidelberg). |
Image recording | Film or detector model: FEI FALCON III (4k x 4k) / Detector mode: INTEGRATING / Average exposure time: 1.5 sec. / Average electron dose: 45.0 e/Å2 |
Electron beam | Acceleration voltage: 300 kV / Electron source: ![]() |
Electron optics | Illumination mode: SPOT SCAN / Imaging mode: BRIGHT FIELD / Cs: 0.01 mm / Nominal defocus max: 2.5 µm / Nominal defocus min: 0.2 µm / Nominal magnification: 59000 |
Sample stage | Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER / Cooling holder cryogen: NITROGEN |
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
-
Image processing
Startup model | Type of model: OTHER Details: Low resolution cryo-EM map of vacant human 40S subunit. |
---|---|
Final reconstruction | Applied symmetry - Point group: C1 (asymmetric) / Resolution.type: BY AUTHOR / Resolution: 3.4 Å / Resolution method: FSC 0.143 CUT-OFF / Number images used: 356632 |
Initial angle assignment | Type: PROJECTION MATCHING |
Final angle assignment | Type: PROJECTION MATCHING |
-Atomic model buiding 1
Refinement | Space: REAL |
---|---|
Output model | ![]() PDB-8rg0: |