[English] 日本語
Yorodumi
- PDB-6vkt: Cryo-electron microscopy structures of a gonococcal multidrug eff... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 6vkt
TitleCryo-electron microscopy structures of a gonococcal multidrug efflux pump illuminate a mechanism of erythromycin drug recognition
ComponentsEfflux pump membrane transporter
KeywordsMEMBRANE PROTEIN / Efflux / pump / erythromycin
Function / homology
Function and homology information


xenobiotic transport / efflux transmembrane transporter activity / plasma membrane
Similarity search - Function
Sterol-sensing domain (SSD) profile. / Sterol-sensing domain / Hydrophobe/amphiphile efflux-1 HAE1 / Acriflavin resistance protein / Multidrug efflux transporter AcrB TolC docking domain, DN/DC subdomains / AcrB/AcrD/AcrF family
Similarity search - Domain/homology
ERYTHROMYCIN A / PHOSPHATIDYLETHANOLAMINE / : / Efflux pump membrane transporter
Similarity search - Component
Biological speciesNeisseria gonorrhoeae (bacteria)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.72 Å
AuthorsLyu, M. / Moseng, M.A.
Funding support United States, 1items
OrganizationGrant numberCountry
National Institutes of Health/National Institute Of Allergy and Infectious Diseases (NIH/NIAID)R01 AI145069 United States
CitationJournal: mBio / Year: 2020
Title: Cryo-EM Structures of a Gonococcal Multidrug Efflux Pump Illuminate a Mechanism of Drug Recognition and Resistance.
Authors: Meinan Lyu / Mitchell A Moseng / Jennifer L Reimche / Concerta L Holley / Vijaya Dhulipala / Chih-Chia Su / William M Shafer / Edward W Yu /
Abstract: is an obligate human pathogen and causative agent of the sexually transmitted infection (STI) gonorrhea. The most predominant and clinically important multidrug efflux system in is the ultiple ... is an obligate human pathogen and causative agent of the sexually transmitted infection (STI) gonorrhea. The most predominant and clinically important multidrug efflux system in is the ultiple ransferrable esistance (Mtr) pump, which mediates resistance to a number of different classes of structurally diverse antimicrobial agents, including clinically used antibiotics (e.g., β-lactams and macrolides), dyes, detergents and host-derived antimicrobials (e.g., cationic antimicrobial peptides and bile salts). Recently, it has been found that gonococci bearing mosaic-like sequences within the gene can result in amino acid changes that increase the MtrD multidrug efflux pump activity, probably by influencing antimicrobial recognition and/or extrusion to elevate the level of antibiotic resistance. Here, we report drug-bound solution structures of the MtrD multidrug efflux pump carrying a mosaic-like sequence using single-particle cryo-electron microscopy, with the antibiotics bound deeply inside the periplasmic domain of the pump. Through this structural approach coupled with genetic studies, we identify critical amino acids that are important for drug resistance and propose a mechanism for proton translocation. has become a highly antimicrobial-resistant Gram-negative pathogen. Multidrug efflux is a major mechanism that uses to counteract the action of multiple classes of antibiotics. It appears that gonococci bearing mosaic-like sequences within the gene , encoding the most predominant and clinically important transporter of any gonococcal multidrug efflux pump, significantly elevate drug resistance and enhance transport function. Here, we report cryo-electron microscopy (EM) structures of MtrD carrying a mosaic-like sequence that allow us to understand the mechanism of drug recognition. Our work will ultimately inform structure-guided drug design for inhibiting these critical multidrug efflux pumps.
History
DepositionJan 22, 2020Deposition site: RCSB / Processing site: RCSB
Revision 1.0Jul 1, 2020Provider: repository / Type: Initial release
Revision 1.1Aug 5, 2020Group: Database references / Category: citation / citation_author
Item: _citation.country / _citation.journal_abbrev ..._citation.country / _citation.journal_abbrev / _citation.journal_id_CSD / _citation.journal_id_ISSN / _citation.journal_volume / _citation.pdbx_database_id_DOI / _citation.pdbx_database_id_PubMed / _citation.title / _citation.year
Revision 1.2Mar 6, 2024Group: Data collection / Database references / Category: chem_comp_atom / chem_comp_bond / database_2
Item: _database_2.pdbx_DOI / _database_2.pdbx_database_accession

-
Structure visualization

Movie
  • Deposited structure unit
  • Imaged by Jmol
  • Download
  • Superimposition on EM map
  • EMDB-21229
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Efflux pump membrane transporter
B: Efflux pump membrane transporter
C: Efflux pump membrane transporter
hetero molecules


Theoretical massNumber of molelcules
Total (without water)352,54927
Polymers334,9323
Non-polymers17,61724
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: microscopy
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

#1: Protein Efflux pump membrane transporter


Mass: 111643.969 Da / Num. of mol.: 3
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Neisseria gonorrhoeae (bacteria) / Gene: mtrD, E8M65_05860, E8M67_05810, E8M69_06545 / Production host: Escherichia coli (E. coli) / References: UniProt: A0A4T9VBR9, UniProt: Q5F725*PLUS
#2: Chemical...
ChemComp-PTY / PHOSPHATIDYLETHANOLAMINE


Mass: 734.039 Da / Num. of mol.: 23 / Source method: obtained synthetically / Formula: C40H80NO8P / Comment: phospholipid*YM
#3: Chemical ChemComp-ERY / ERYTHROMYCIN A


Mass: 733.927 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: C37H67NO13 / Feature type: SUBJECT OF INVESTIGATION / Comment: antibiotic*YM
Has ligand of interestY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: MtrD efflux pump with bound erythromycin / Type: COMPLEX / Entity ID: #1 / Source: RECOMBINANT
Source (natural)Organism: Neisseria gonorrhoeae (bacteria)
Source (recombinant)Organism: Escherichia coli (E. coli)
Buffer solutionpH: 7.5
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: OTHER
Electron lensMode: OTHER
Image recordingElectron dose: 40 e/Å2 / Film or detector model: GATAN K2 SUMMIT (4k x 4k)

-
Processing

CTF correctionType: NONE
3D reconstructionResolution: 2.72 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 1507208 / Symmetry type: POINT

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more